International journal of molecular medicine
-
miR-16 is known to be abnormally expressed in hepatocellular carcinoma (HCC) cells, and the overexpression of miR-16 inhibits the proliferation, invasion and metastasis of various cancer cells. MicroRNAs (miRNAs or miRs) are closely related to the proliferation, invasion and metastasis of HCC. The present study aimed to explore the effects of miR-16 on the proliferation, invasion and metastasis of HCC cells, and to elucidate the mechanisms involved. ⋯ This was achieved through the upregulation of Bax expression, the downregulation of Bcl-2 expression and the decrease in the expression of MMP-2 and MMP-9. In addition the expression of E-cadherin increased and vimentin expression decreased. miR‑16 overexpression inhibited PI3K expression and Akt phosphorylation. The results of this study suggest that the overexpression of miR‑16 inhibits the proliferation, invasion and metastasis of HepG2 HCC cells, and that these effects are associated with the PI3K/Akt signaling pathway.
-
The protective effects of sevoflurane post-conditioning against myocardial ischemia/reperfusion (I/R) injury (MIRI) have been previously reported. However, the mechanisms responsible for these protective effects remain elusive. In this study, in order to investigate the molecular mechanisms responsible for the protective effects of sevoflurane post-conditioning on isolated rat hearts subjected to MIRI, Sprague-Dawley rat hearts were randomly divided into the following 6 groups: i) the sham-operated control; ii) 2.5% sevoflurane; iii) ischemia/reperfusion (I/R); iv) 2.5% sevoflurane post-conditioning plus I/R; v) 2.5% sevoflurane post-conditioning + NG-nitro-L-arginine methyl ester (L-NAME) plus I/R; and vi) L-NAME plus I/R. ⋯ The findings of the present study suggest that sevoflurane post-conditioning protects the myocardium against I/R injury and reduces the myocardial infarct size. The underlying protective mechanisms are associated with the inhibition of mitochondrial permeability transition pore opening, and with the attenuation of cardiomyoctye apoptosis and excessive autophagy. These effects are mediated through an increase in NOS and a decrease in phopshorylated NHE1 levels.