International journal of molecular medicine
-
The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a novel β coronavirus that is the etiological agent of the pandemic coronavirus disease 2019 (COVID‑19) that at the time of writing (June 16, 2020) has infected almost 6 million people with some 450,000 deaths. These numbers are still rising daily. Most (some 80%) cases of COVID‑19 infection are asymptomatic, a substantial number of cases (15%) require hospitalization and an additional fraction of patients (5%) need recovery in intensive care units. ⋯ We propose here that the thromboembolic events and eventually the development of DIC provoked by SARS‑CoV‑2 infection may represent a secondary anti‑phospholipid antibody syndrome (APS). We will apply both Baconian inductivism and Cartesian deductivism to prove that secondary APS is likely responsible for coagulopathy during the course of COVID‑19 infection. Diagnostic and therapeutic implications of this are also discussed.
-
Cardiovascular diseases (CVDs), such as atherosclerosis, hypertension, myocardial infarction and diabetic heart disease, are associated with high morbidity and mortality rates worldwide, and may also induce multiple organ failure in their later stages, greatly reducing the long‑term survival of the patients. There are several causes of CVDs, but after nearly a decade of investigation, researchers have found that CVDs are usually accompanied by an imbalance of gut microbiota and a decreased abundance of flora. ⋯ It is known that changes in the intestinal flora following antibiotic administration, diet supplementation with probiotics, or exercise, can interfere with the composition of the intestinal flora and may represent an effective approach to preventing or treating CVDs. The focus of this review was the analysis of gut microbiota metabolites to elucidate their effects on CVDs and to identify the most cost‑effective and beneficial methods for treating CVDs with minimal side effects.
-
Diabetes‑associated cognitive decline is a recently identified a potential complication of diabetes. The present study was designed to examine the effects of troxerutin, a potent antioxidant, on cognitive function in rats with streptozotocin‑induced diabetes and to further explore the potential underlying mechanisms. Cognitive functions were investigated by the Morris water maze test. ⋯ Troxerutin elevated the expression levels of the antioxidant enzymes, heme oxygenase‑1 (HO‑1) and NAD(P)H:quinone oxidoreductase (NQO1), and decreased the expression levels of the NOX subunits, gp91phox, p47phox and p22phox. On the whole, these findings demonstrate that troxerutin exerts neuroprotective effects against diabetes‑associated cognitive decline by suppressing oxidative stress in the hippocampus of rats with streptozotocin‑induced diabetes. Troxerutin may thus prove to be a potential therapeutic medicine for the treatment of diabetes‑associated cognitive decline.