International journal of molecular medicine
-
The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a novel β coronavirus that is the etiological agent of the pandemic coronavirus disease 2019 (COVID‑19) that at the time of writing (June 16, 2020) has infected almost 6 million people with some 450,000 deaths. These numbers are still rising daily. Most (some 80%) cases of COVID‑19 infection are asymptomatic, a substantial number of cases (15%) require hospitalization and an additional fraction of patients (5%) need recovery in intensive care units. ⋯ We propose here that the thromboembolic events and eventually the development of DIC provoked by SARS‑CoV‑2 infection may represent a secondary anti‑phospholipid antibody syndrome (APS). We will apply both Baconian inductivism and Cartesian deductivism to prove that secondary APS is likely responsible for coagulopathy during the course of COVID‑19 infection. Diagnostic and therapeutic implications of this are also discussed.
-
In view of the emerging COVID‑19 pandemic caused by SARS‑CoV‑2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID‑19. ⋯ Zinc status is also tightly associated with risk factors for severe COVID‑19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID‑19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator‑induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.
-
In the current context of the pandemic triggered by SARS-COV-2, the immunization of the population through vaccination is recognized as a public health priority. In the case of SARS‑COV‑2, the genetic sequencing was done quickly, in one month. ⋯ The most difficult scientific challenge for this future vaccine obtained in the laboratory is the proof of clinical safety and efficacy. The biggest challenge of manufacturing is the construction and validation of production platforms capable of making the vaccine on a large scale.
-
Endothelial cell senescence is closely related to the occurrence of cardiovascular diseases and microRNAs (miRNAs/miRs) are considered as therapeutic targets for cardiovascular disease. The current study aimed to investigate the role of miR‑20b in the senescence process of endothelial cells and its underlying mechanism. Cell viability, proportion of senescent cells and the cell cycle were respectively determined by Cell Counting Kit‑8, SA‑β‑galactosidase and flow cytometry. ⋯ Thioredoxin interacting protein (TXNIP) was predicted as a target gene for miR‑20b and knockdown of TXNIP increased cell viability, inhibited cell senescence, reduced the expression of p16, p21, TXNIP, NLR family pyrin domain containing 3 (NLRP3) and cleaved Caspase‑1 and reversed the promoting effects of the miR‑20b inhibitor and H2O2 on cell senescence. Furthermore, the knockdown of TXNIP inhibited the Wnt/β‑catenin pathway. The finding reveals that high expression of miR‑20b inhibits the senescence of human umbilical vein endothelial cells through regulating the Wnt/β‑catenin pathway via the TXNIP/NLRP3 axis.
-
Development of resistance to endocrine therapy, such as tamoxifen, remains a tricky clinical problem during the treatment of breast cancer. Accumulating evidence suggested that dysregulation of long noncoding (lnc_RNAs contributes to the development of tamoxifen resistance. In the current study, via screening, cytoskeleton regulator RNA (CYTOR) was identified as the most significantly elevated lncRNA in the established tamoxifen resistant MCF7 cell lines (MCF7/TAM1 and MCF7/TAM2) compared with the parental MCF7 cells (MCF7‑P). ⋯ In the collected tumor tissues of breast cancer in the present study, high expression of CYTOR was detected in tissues from patients with no response to tamoxifen compared with those from patients who were not treated with tamoxifen. A positive correlation between CYTOR and SRF mRNA expression was observed in tissues collected from patients with breast cancer. In conclusion, the results of the present study demonstrated a pivotal role of CYTOR in mediating tamoxifen resistance in breast cancer.