Journal of physiology and biochemistry
-
J. Physiol. Biochem. · Mar 2015
Deregulation of NF-кB-miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy.
The current study was designed to explore whether microRNA-146a and its adapter proteins (tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1)) are involved in the pathogenesis of diabetes neuropathy. Twelve male Sprague Dawley rats were randomized into control and diabetic groups (n = 6). Diabetes was induced by a single-dose injection of nicotinamide (110 mg/kg; i.p.), 15 min before injection of streptozotocin (50 mg/kg; i.p.) in 12-h-fasted rats. ⋯ In comparison with the control group, a threefold increase in the expression of miR-146a and NF-κB, and a twofold decrease in the expression of TRAF6 were observed in the sciatic nerve of diabetic rats. Furthermore, the NF-κB activity and the concentration of TNF-α, interleukin 6 (IL-6), and interleukin 1β (IL-1β) in the sciatic nerve of diabetic rats were higher than in those of control counterparts. These results suggest that a defect in the NF-кB-miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy.