Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering
-
J Environ Sci Health A Tox Hazard Subst Environ Eng · Jan 2005
ReviewIs biodegradation of bitumen a source of recalcitrant naphthenic acid mixtures in oil sands tailing pond waters?
Carboxylic acids are transient metabolites during the mineralization of petroleum hydrocarbons. Crude oils, however, vary in their proportion of the hydrocarbon components. Depending on structure, some carboxylic acid metabolites resist further biodegradation and persist in aquatic systems. ⋯ The present article discusses the literature data on the biotransformation of hydrocarbons in bitumen from oil sands to the corresponding petroleum carboxylic acids. Some insight is given on the mechanism of the biodegradation process. The susceptibility to biodegradation is affected by differences in alicyclic carboxylic acids such as carbon chain length, chain branching, and the oddness or evenness of carbon chain containing the carboxylic group, positions where alkyl groups are substituted on the cyclic ring, geometrical isomerism, and number of cyclic rings.
-
J Environ Sci Health A Tox Hazard Subst Environ Eng · Jan 2005
ReviewIn situ bioremediation of naphthenic acids contaminated tailing pond waters in the athabasca oil sands region--demonstrated field studies and plausible options: a review.
Currently, there are three industrial plants that recover oil from the lower Athabasca oil sands area, and there are plans in the future for several additional mines. The extraction procedures produce large volumes of slurry wastes contaminated with naphthenic acids (NAs). Because of a "zero discharge" policy the oil sands companies do not release any extraction wastes from their leases. ⋯ The bioremediation techniques have limited success to date in biodegrading NAs to levels below 19 mg/L. Some tailing pond waters have been stored for more than 10 years, and it appears that the remaining high molecular weight NAs are refractory to the natural biodegradation process in the ponds. Some plausible options to further degrade the NAs in the tailings pond water include: bioaugmentation with bacteria selected to degrade the more refractory classes of NAs; the use of attachment materials such as clays to concentrate both the NA and the NA-degrading bacteria in their surfaces and/or pores; synergistic association between algae and bacteria consortia to promote efficient aerobic degradation; and biostimulation with nutrients to promote the growth and activity of the microorganisms.