Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
-
J Cardiovasc Magn Reson · Oct 2011
Right ventricular dysfunction is a predictor of non-response and clinical outcome following cardiac resynchronization therapy.
Cardiac resynchronization therapy (CRT) is an established treatment in advanced heart failure (HF). However, an important subset does not derive a significant benefit. Despite an established predictive role in HF, the significance of right ventricular (RV) dysfunction in predicting clinical benefit from CRT remains unclear. We investigated the role of RV function, assessed by cardiovascular magnetic resonance (CMR), in predicting response to and major adverse clinical events in HF patients undergoing CRT. ⋯ Right ventricular function is an important predictor of both response to CRT and long-term clinical outcome. Routine assessment of the right ventricle should be considered in the evaluation of patients for CRT.
-
J Cardiovasc Magn Reson · Oct 2011
Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress.
Dobutamine stress cardiovascular magnetic resonance (DS-CMR) is an established tool to assess hibernating myocardium and ischemia. Analysis is typically based on visual assessment with considerable operator dependency. CMR myocardial feature tracking (CMR-FT) is a recently introduced technique for tissue voxel motion tracking on standard steady-state free precession (SSFP) images to derive circumferential and radial myocardial mechanics.We sought to determine the feasibility and reproducibility of CMR-FT for quantitative wall motion assessment during intermediate dose DS-CMR. ⋯ CMR-FT reliably detects quantitative wall motion and strain derived from SSFP cine imaging that corresponds to inotropic stimulation. The current implementation may need improvement to reduce observer-induced variance. Within a given CMR lab; this novel technique holds promise of easy and fast quantification of wall mechanics and strain.
-
J Cardiovasc Magn Reson · Oct 2011
Regional contrast agent quantification in a mouse model of myocardial infarction using 3D cardiac T1 mapping.
Quantitative relaxation time measurements by cardiovascular magnetic resonance (CMR) are of paramount importance in contrast-enhanced studies of experimental myocardial infarction. First, compared to qualitative measurements based on signal intensity changes, they are less sensitive to specific parameter choices, thereby allowing for better comparison between different studies or during longitudinal studies. Secondly, T1 measurements may allow for quantification of local contrast agent concentrations. In this study, a recently developed 3D T1 mapping technique was applied in a mouse model of myocardial infarction to measure differences in myocardial T1 before and after injection of a liposomal contrast agent. This was then used to assess the concentration of accumulated contrast agent. ⋯ 3D cardiac T1 mapping by CMR can be used to monitor the accumulation of contrast agents in contrast-enhanced studies of murine myocardial infarction. The contrast agent relaxivity was decreased under in vivo conditions compared to in vitro measurements, which needs consideration when quantifying local contrast agent concentrations.
-
J Cardiovasc Magn Reson · Oct 2011
Comparative StudyQuantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T.
Three-dimensional time-resolved (4D) phase-contrast (PC) CMR can visualize and quantify cardiovascular flow but is hampered by long acquisition times. Acceleration with SENSE or k-t BLAST are two possibilities but results on validation are lacking, especially at 3 T. The aim of this study was therefore to validate quantitative in vivo cardiac 4D-acquisitions accelerated with parallel imaging and k-t BLAST at 1.5 T and 3 T with 2D-flow as the reference and to investigate if field strengths and type of acceleration have major effects on intracardiac flow visualization. ⋯ The present study showed that quantitative 4D flow accelerated with SENSE has good accuracy at 3 T and compares favourably to 1.5 T. 4D flow accelerated with k-t BLAST underestimate flow velocities and thereby yield too high bias for intra-cardiac quantitative in vivo use at the present time. For intra-cardiac 4D-flow visualization, however, 1.5 T and 3 T as well as SENSE or k-t BLAST can be used with similar quality.
-
J Cardiovasc Magn Reson · Sep 2011
ReviewThe role of cardiovascular magnetic resonance in pediatric congenital heart disease.
Cardiovascular magnetic resonance (CMR) has expanded its role in the diagnosis and management of congenital heart disease (CHD) and acquired heart disease in pediatric patients. Ongoing technological advancements in both data acquisition and data presentation have enabled CMR to be integrated into clinical practice with increasing understanding of the advantages and limitations of the technique by pediatric cardiologists and congenital heart surgeons. Importantly, the combination of exquisite 3D anatomy with physiological data enables CMR to provide a unique perspective for the management of many patients with CHD. Imaging small children with CHD is challenging, and in this article we will review the technical adjustments, imaging protocols and application of CMR in the pediatric population.