Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
-
J Cardiovasc Magn Reson · Mar 2018
Correction to: Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.
Figure 1 of this original publication contained a minor error as one of the lines in the "Reconstruction pipline" was not visible. The updated Fig. 1 is published in this correction article.
-
J Cardiovasc Magn Reson · Dec 2017
ReviewReview of Journal of Cardiovascular Magnetic Resonance (JCMR) 2015-2016 and transition of the JCMR office to Boston.
The Journal of Cardiovascular Magnetic Resonance (JCMR) is the official publication of the Society for Cardiovascular Magnetic Resonance (SCMR). In 2016, the JCMR published 93 manuscripts, including 80 research papers, 6 reviews, 5 technical notes, 1 protocol, and 1 case report. The number of manuscripts published was similar to 2015 though with a 12% increase in manuscript submissions to an all-time high of 369. ⋯ I hope that you will continue to send your high quality manuscripts to JCMR for consideration. Importantly, I also ask that you consider referencing recent JCMR publications in your submissions to the JCMR and elsewhere as these contribute to our impact factor. I also thank our dedicated Associate Editors, Guest Editors, and reviewers for their many efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the leading publication in our field.
-
J Cardiovasc Magn Reson · Dec 2017
Quantification of mitral regurgitation in patients with hypertrophic cardiomyopathy using aortic and pulmonary flow data: impacts of left ventricular outflow tract obstruction and different left ventricular segmentation methods.
Cardiovascular magnetic resonance (CMR) imaging in patients with hypertrophic cardiomyopathy (HCM) enables the assessment of not only left ventricular (LV) hypertrophy and scarring but also the severity of mitral regurgitation. CMR assessment of mitral regurgitation is primarily based on the difference between LV stroke volume (LVSV) and aortic forward flow (Ao) measured using the phase-contrast (PC) technique. However, LV outflow tract (LVOT) obstruction causing turbulent, non-laminar flow in the ascending aorta may impact the accuracy of aortic flow quantification, leading to false conclusions regarding mitral regurgitation severity. Thus, we decided to quantify mitral regurgitation in patients with HCM using Ao or, alternatively, main pulmonary artery forward flow (MPA) for mitral regurgitation volume (MRvol) calculations. ⋯ In HCM patients, LVOT obstruction significantly affects the estimation of aortic flow, leading to its underestimation and, consequently, to higher MRvol values than those obtained with MPA-based MRvol calculations.
-
J Cardiovasc Magn Reson · Dec 2017
Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with repaired Tetralogy of Fallot: a cross-sectional study.
Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. ⋯ We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.
-
J Cardiovasc Magn Reson · Nov 2017
3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography.
Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy. ⋯ The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.