IEEE transactions on ultrasonics, ferroelectrics, and frequency control
-
Standing-wave acoustic tweezers are popularly used for non-invasive and non-contact particle manipulation. Because of their good penetration in biological tissue, they also show promising prospects for in vivo applications. According to the concept of an optical vortex, we propose an acoustics-vortex- based trapping model of acoustic tweezers. ⋯ The presence of transverse trapping and the long working distance make the model useful for 2-D manipulation, particularly in in vivo applications. This paper details the trapping properties in the acoustic vortex and describes methods for improving the design of the transducer. The results obtained support the feasibility of the potential-well model of acoustic tweezers.