IEEE transactions on ultrasonics, ferroelectrics, and frequency control
-
IEEE Trans Ultrason Ferroelectr Freq Control · Feb 2015
Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE).
Two-dimensional shear-wave elastography presents 2-D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2-D shear-wave elastography on conventional ultrasound scanners, however, is challenging because of the low tracking pulse-repetition-frequency (PRF) of these systems. Although some clinical and research platforms support software beamforming and plane-wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2-D shear-wave elastography technique from laboratory to clinical scanners. ⋯ An inclusion phantom study showed that the conventional ultrasound scanner had comparable performance to a state-of-the-art shear-wave imaging system in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the conventional ultrasound scanner for in vivo 2-D shear-wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2-D shear-wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear-wave elastography.
-
IEEE Trans Ultrason Ferroelectr Freq Control · Feb 2015
Ultrasound-induced heart rate decrease: role of the vagus nerve.
The goal of this study is to investigate the role of the vagus nerve (VN) in the ultrasound (US)-induced negative chronotropic effect (deceased heart rate). One of the functions of the VN is to mediate lowering of the heart rate. A previous study showed a decrease of ~20% in the heart rate but the mechanism of the effect was not investigated. ⋯ The vagotomy group showed similar ultrasound-induced cardiac effects compared with the non-vagotomy group, suggesting that the vagus nerve is not influenced by the ultrasound exposure procedures. The US application caused a negative chronotropic effect of the rat heart without affecting the hemodynamic conditions. The results at this point are suggestive for an alternative cardiac pacing capability.