IEEE transactions on ultrasonics, ferroelectrics, and frequency control
-
IEEE Trans Ultrason Ferroelectr Freq Control · Nov 2010
3-D ultrasound volume reconstruction using the direct frame interpolation method.
A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. ⋯ The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce computation times and memory requirements. The method is straightforward, independent of additional input or parameters, and uses the high-resolution B-mode image frames instead of usually lower-resolution voxel information for interpolation. The DFI method can be considered as a valuable alternative to conventional 3-D ultrasound reconstruction methods based on pixel or voxel nearest-neighbor approaches, offering better quality and competitive reconstruction time.
-
Standing-wave acoustic tweezers are popularly used for non-invasive and non-contact particle manipulation. Because of their good penetration in biological tissue, they also show promising prospects for in vivo applications. According to the concept of an optical vortex, we propose an acoustics-vortex- based trapping model of acoustic tweezers. ⋯ The presence of transverse trapping and the long working distance make the model useful for 2-D manipulation, particularly in in vivo applications. This paper details the trapping properties in the acoustic vortex and describes methods for improving the design of the transducer. The results obtained support the feasibility of the potential-well model of acoustic tweezers.
-
IEEE Trans Ultrason Ferroelectr Freq Control · Oct 2009
Quantitative measures of boundary and contrast enhancement in speckle reduction in ultrasonic B-mode images using spatial bessel filters.
The spatial Bessel filters are studied for their ability to reduce ultrasonic speckle and enhance the boundaries of regions of interest (ROI) in medical B-mode images. Using the concept of the heterogeneity index, a new parameter is defined to provide a quantitative measure of the edge visibility. It is hypothesized that this edge visibility parameter will be almost equal to unity if the ROI does not contain a boundary and greater than unity when the ROI contains a boundary. ⋯ In addition, parametric images containing a map of the edge visibility were created that showed clear boundaries. The quantitative measures strongly support the visual perception of contrast and enhanced edge visibility provided by the spatial Bessel filters. Results demonstrate the potential use of Bessel spatial filters in providing speckle reduction along with the ability to enhance the boundaries of regions of interest in B-mode images.
-
IEEE Trans Ultrason Ferroelectr Freq Control · Oct 2009
Toward a real-time simulation of ultrasound image sequences based on a 3-D set of moving scatterers.
Data simulation is an important research tool to evaluate algorithms. Two types of methods are currently used to simulate medical ultrasound data: those based on acoustic models and those based on convolution models. The simulation of ultrasound data sequences is very time-consuming. ⋯ An example applied to flow imaging is proposed. Several cases are used to show that this displacement model provides realistic data. It is validated with speckle tracking, a well-known motion estimator in ultrasound imaging.
-
IEEE Trans Ultrason Ferroelectr Freq Control · Jul 2008
Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.
A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. ⋯ The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools.