Canadian journal of physiology and pharmacology
-
Can. J. Physiol. Pharmacol. · Sep 1998
Modulation of GABA(A) receptor function by neuroactive steroids: evidence for heterogeneity of steroid sensitivity of recombinant GABA(A) receptor isoforms.
Neuroactive steroids are potent, selective allosteric modulators of gamma-aminobutyric acid type A (GABA(A)) receptor function in the central nervous system, and may serve as endogenous anxiolytic and analgesic agents. In order to study the influence of subunit subtypes of the GABA(A) receptor on modulation of receptor function by neuroactive steroids, we expressed human recombinant GABA(A) receptors in Xenopus oocytes. GABA-activated membrane current, and the modulatory effects of the endogenous neurosteroid 5alpha-pregnan-3alpha-ol-20-one (allopregnanolone) and the synthetic steroid anesthetic 5alpha-pregnan-3alpha-ol-11,20-dione (alphaxalone) were measured using two-electrode voltage-clamp recording techniques. ⋯ Epipregnanolone had a greater efficacy as a blocker at the alpha1beta2gamma2L receptor isoform compared with the alpha1beta1gamma2L receptor isoform, and also produced a greater degree of block of potentiation caused by allopregnanolone compared with alphaxalone. Our results support the hypothesis that the heteromeric assembly of different GABA(A) receptor isoforms containing different subunit subtypes results in multiple steroid recognition sites on GABA(A) receptors, which in turn produces distinctly different modulatory interactions between neuroactive steroids acting at the GABA(A) receptor. The alpha and gamma subunit subtypes may have the greatest influence on allopregnanolone modulation of GABA(A) receptor function, whereas the beta and gamma subunit subtypes appear to be most important for the modulatory effects of alphaxalone.