Canadian journal of physiology and pharmacology
-
Can. J. Physiol. Pharmacol. · Aug 2004
Comparative Study Clinical Trial Controlled Clinical TrialTherapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study.
There are indications that both intensive exercise and electrical stimulation have a beneficial effect on arm function in post-stroke hemiplegic patients. We recommend the use of Functional Electrical Therapy (FET), which combines electrical stimulation of the paretic arm and intensive voluntary movement of the arm to exercise daily functions. FET was applied 30 min daily for 3 weeks. ⋯ The speed of recovery was larger during the period of the FET compared with the follow-up period. The gains in Group A were significantly larger compared with the gains in Group B. The FET greatly promotes the recovery of the paretic arm if applied during the acute phase of post-stroke hemiplegia.
-
Can. J. Physiol. Pharmacol. · Aug 2004
Selective motor unit recruitment via intrafascicular multielectrode stimulation.
Recruitment of force via independent asynchronous firing of large numbers of motor units produces the grace and endurance of physiological motion. We have investigated the possibility of reproducing this physiological recruitment strategy by determining the selectivity of access to large numbers of independent motor units through intrafascicular multielectrode stimulation (IFMS) of the peripheral nerve. A Utah Slanted Electrode Array containing 100, 0.5-1.5 mm-long penetrating electrodes was inserted into the sciatic nerve of a cat, and forces generated by the 3 heads of triceps surea in response to electrical stimulation of the nerve were monitored via force transducers attached to their tendons. ⋯ Among electrodes demonstrating selectivity at threshold, a mean of 7.3 +/- 2.7 electrodes were shown to recruit independent populations of motor units innervating medial gastrocnemius (overlap < 20%). Corresponding numbers of electrodes were reported for lateral gastrocnemius and soleus, as well. We used these stimulation data to emulate physiological recruitment strategies, and found that independent motor unit pool recruitment approximates physiological activation more closely than does intensity-based recruitment or frequency-based recruitment.