Med Phys
-
Comparative Study Clinical Trial Controlled Clinical Trial
Use and uncertainties of mutual information for computed tomography/ magnetic resonance (CT/MR) registration post permanent implant of the prostate.
Post-implant dosimetric analysis for permanent implant of the prostate benefits from the use of a computed tomography (CT) dataset for optimal identification of the radioactive source (seed) positions and a magnetic resonance (MR) dataset for optimal description of the target and normal tissue volumes. The CT/MR registration process should be fast and sufficiently accurate to yield a reliable dosimetric analysis. Since critical normal tissues typically reside in dose gradient regions, small shifts in the dose distribution could impact the prediction of complication or complication severity. ⋯ Registration methods as applied here using mutual information and seed matching are consistent, except for a small systematic difference in the inferior-superior axis for a minority of cases (approximately 15%). Cases registered with mutual information and with bony anatomy misregistration of greater than approximately 5 mm should be evaluated for rescan or seed-match registration. The improvement in efficiency of use for the MI registration method is substantial, approximately 30 min compared to several hours using seed match registration.
-
Comparative Study
Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery.
This paper systematically studied the dosimetric difference between a 3 mm micro multileaf collimator (MLC), a 5 mm MLC, and a 10 mm MLC for stereotactic radiosurgery using the Brainscan treatment planning system. Thirty-four cases treated with the dynamic conformal arcs technique and 20 cases treated with the intensity modulated radiosurgery/fractionated radiotherapy (IMRS/ IMRT) technique were retrospectively studied. The conformity index, the percentage target coverage, and the dose-volume histogram (DVH) for organs-at-risk (OARs) were used for dosimetric analysis and comparison for different treatment techniques, target volumes, and treatment sites. ⋯ The results suggest that for the dynamic conformal arcs technique, the narrower leaf-width MLC provides better dose conformity than the wider leaf-width MLCs. This advantage decreases when the target volume increases. For the IMRS/IMRT technique, the narrower leaf-width MLC could have better sparing of small OARs than the wider leaf-width MLC.