Med Phys
-
Atherosclerosis at the carotid bifurcation can result in cerebral emboli, which in turn can block the blood supply to the brain causing ischemic strokes. Noninvasive imaging tools that better characterize arterial wall, and atherosclerotic plaque structure and composition may help to determine the factors which lead to the development of unstable lesions, and identify patients at risk of plaque disruption and stroke. Carotid magnetic resonance (MR) imaging allows for the characterization of carotid vessel wall and plaque composition, the characterization of normal and pathological arterial wall, the quantification of plaque size, and the detection of plaque integrity. ⋯ The mean registration error between the segmented carotid artery wall boundaries in the target US image and the registered MR images was calculated using a distance-based error metric after applying a "twisting and bending" model based nonrigid registration algorithm. An average registration error of 1.4 +/- 0.3 mm was obtained for 1.5 T MR and 1.5 +/- 0.4 mm for 3.0 T MR, when registered with 3D US images using the nonrigid registration technique presented in this paper. Visual inspection of segmented vessel surfaces also showed a substantial improvement of alignment with this nonrigid registration technique compared to rigid registration.