Med Phys
-
The modulation of tissue hemodynamics has important clinical value in medicine for both tumor diagnosis and therapy. As an oncological tool, increasing tissue oxygenation via modulation of inspired gas has been proposed as a method to improve cancer therapy and determine radiation sensitivity. As a radiological tool, inducing changes in tissue total hemoglobin may provide a means to detect and characterize malignant tumors by providing information about tissue vascular function. The ability to change and measure tissue hemoglobin and oxygenation concentrations in the healthy breast during administration of three different types of modulated gas stimuli (oxygen/ carbogen, air/carbogen, and air/oxygen) was investigated. ⋯ MR-guided diffuse optical imaging is a unique tool that can measure tissue hemodynamics in the breast during modulated breathing. This technique may have utility in determining the therapeutic potential of pretreatment tissue oxygenation or in investigating vascular function. Future gas modulation studies in the breast should use a combination of oxygen and carbogen as the functional stimulus. Additionally, control measures of subject physiology during air breathing are critical for robust measurements.
-
MR thermometry based on the proton resonance frequency shift (PRFS) is the most commonly used method for the monitoring of thermal therapies. As the chemical shift of water protons is temperature dependent, the local temperature variation (relative to an initial baseline) may be calculated from time-dependent phase changes in gradient-echo (GRE) MR images. Dynamic phase shift in GRE images is also produced by time-dependent changes in the magnetic bulk susceptibility of tissue. Gas bubbles (known as "white cavitation") are frequently visualized near the RF electrode in ultrasonography-guided radio frequency ablation (RFA). This study aimed to investigate RFA-induced cavitation's effects by using simultaneous ultrasonography and MRI, to both visualize the cavitation and quantify the subsequent magnetic susceptibility-mediated errors in concurrent PRFS MR-thermometry (MRT) as well as to propose a first-order correction for the latter errors. ⋯ RFA induces dynamic changes in magnetic bulk susceptibility in biological tissue, resulting in large and spatially dependent errors of phase-subtraction-only PRFS MRT and unexploitable thermal dose maps. These thermometry artifacts were strongly correlated with the appearance of transient cavitation. A first-order dynamic model of susceptibility provided a useful method for minimizing these artifacts in phantom and ex vivo experiments.