Med Phys
-
In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. ⋯ For low-dose CT image restoration, the presented ndiNLM method is robust in preserving the spatial resolution and identifying the low-contrast structure. The authors can draw the conclusion that the presented ndiNLM algorithm may be useful for some clinical applications such as in perfusion imaging, radiotherapy, tumor surveillance, etc.
-
The aim of this work was the assessment of the physical performance of the new hybrid PET∕CT system: Discovery-690. ⋯ Discovery-690 shows very good PET physical performance for all the standard NEMA NU-2-2007 measurements. Furthermore, the new reconstruction algorithms available for PET data (TOF and PSF) allow further improvements of the D-690 image quality performance both qualitatively and quantitatively.
-
The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. ⋯ This work describes and validates the synthetic CT theory and algorithm by comparing its results to actual scans. Synthetic CT is a powerful new tool that allows users to realistically see how protocol selection affects CT images and enables radiologists to retrospectively identify the lowest dose protocol achievable that provides diagnostic quality images on real patients.