Med Phys
-
Accurate patient registration is crucial for effective image-guidance in open cranial surgery. Typically, it is accomplished by matching skin-affixed fiducials manually identified in the operating room (OR) with their counterparts in the preoperative images, which not only consumes OR time and personnel resources but also relies on the presence (and subsequent fixation) of the fiducials during the preoperative scans (until the procedure begins). In this study, the authors present a completely automatic, volumetric image-based patient registration technique that does not rely on fiducials by registering tracked (true) 3D ultrasound (3DUS) directly with preoperative magnetic resonance (MR) images. ⋯ Because common features deep in the brain and throughout the surgical volume of interest are used, intraoperative fiducial-less patient registration is possible on-demand, which is attractive in cases where preoperative patient registration is compromised (e.g., from loss∕movement of skin-affixed fiducials) or not possible (e.g., in cases of emergency when external fiducials were not placed in time). CR registration was more robust than MI (capture range about twice as big) and appears to be more accurate, although both methods are comparable to or better than fiducial-based registration in the patient cases evaluated. The results presented here suggest that 3DUS image-based patient registration holds promise for clinical application in the future.
-
The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. ⋯ Daily setup imaging using kilovoltage planar images or TomoTherapy megavoltage fan beam CT imaging can be used as a standard procedure in clinical routine. Daily kilovoltage and megavoltage cone beam computed tomography setup imaging should be applied on an individual or indication based protocol. Depending on the imaging scheme applied, image-guided radiation therapy can be administered without increasing the dose outside of the treated volume compared to therapies without image guidance.