Med Phys
-
Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1-2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). ⋯ The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients.
-
The AAPM has signed two formal Educational Exchange Agreements with the Spanish (SEFM) and the Russian (AMPR) medical physics societies. While the primary purpose of the Agreements is to provide educational opportunities for young medical physicists, the Agreements also contemplate holding joint sessions at scientific congresses. The purpose of this professional AAPM/SEFM/AMPR Joint Symposium is to explore the challenges that medical physicists in the three countries face when new external beam radiotherapy technologies are introduced in their facilities and to suggest potential solutions to limitations in testing equipment and lack of familiarity with protocols. ⋯ The Symposium presentations and the country-tailored recommendations drawn will be made available to each society for inclusion in their websites. The WGNIMP, the AAPM Work Group charged with executing the AAPM/SEFM and AAPM/AMPR Agreements, will follow up on the commitments made by the AAPM. Di Yan's research on adaptive radiotherapy has been financially supported by: 1) NIH Research Grants, 2) Elekta Research Grants 3) Philips Research GrantConflicts of interest for Cedric X Yu: 1) Board Member of Prowess, Inc., 2) Shareholder of Xcision Medical Systems, LLC, 3) Inventor on patents licensed by Varian Medical Systems, Inc.
-
Fusion of intraprocedure ultrasound and preprocedure CT data is proposed for guidance in percutaneous spinal injections, a common procedure for pain management. CT scan of the lumbar spine is usually collected in a supine position, whereas spinal injections are performed in prone or sitting positions. This leads to a difference in the spine curvature between CT and ultrasound images; as such, a single-body rigid registration approach cannot be used for the whole lumbar vertebrae. ⋯ The proposed technique can robustly and simultaneously register several vertebrae extracted from CT images to the ultrasound volumes. The registration error below 2.2 mm is sufficient for most spinal injections.
-
Image-guided radiotherapy (IGRT) is becoming increasingly important in the planning and delivery of radiotherapy. With the aim of implementing the key technologies in a flexible and integrated way in IGRT for accurate radiotherapy system (ARTS), a prototype system named as ARTS-IGRT was designed and completed to apply main principles in image-guided radiotherapy. ⋯ The accuracy and efficiency of ARTS-IGRT on both software and hardware proved to be valid. And also with a flexible and user-friendly interface it can meet the principles of clinical radiotherapy practice. Supported by the Natural Science Foundation of Anhui Province (11040606Q55) and the National Natural Science Foundation of China (30900386).
-
Medical ultrasound has long been used in clinical applications both as a primary modality and as a supplement to other diagnostic procedures. The basis for ultrasound imaging is the transmission of high frequency (megaHertz) sound waves that propagate through tissue. These sound waves backscatter from the interfaces between tissue components with different acoustic properties and are detected by the imaging system, allowing the creation of images based on tissue characteristics and spatial location. ⋯ This course covers the basic principles of contrast agents used in ultrasound imaging including their stability, shell properties and their behavior within an acoustic field. In addition, we will cover many new techniques that are being evaluated in preclinical studies including: p er fus ion-based techniques, molecular imaging, gene therapy, drug delivery, and acoustic angiography. Finally, basic safety concerns and biological effects will be reviewed.