Med Phys
-
Magnetic particle imaging (MPI) is a recently developed imaging technique that seeks to provide ultrahigh resolution and tracer sensitivity with positive contrast directly originated from superparamagnetic iron oxide nanoparticles (NPs). MPI signals can be generated from a combination of Néel relaxation, Brownian rotational diffusion, and hysteretic reversal mechanisms of NPs in response to applied magnetic fields. When specific targeting of organs, such as carcinoma and endothelial cardiovascular cells, is needed, different behavior may be expected in immobilized NPs, due to complete or partial elimination of the Brownian motion. Here, the authors present an experimental investigation of the MPI spatial resolution and signal intensities as a function of a wide range of median core sizes of NPs under four representative conditions, including after immobilization in a tissue equivalent medium. ⋯ The results show that the MPI signal is very sensitive to both NP size and environment. The authors' calculations show that Brownian rotational diffusion is slower than the field switching cycle and, therefore, it has minimal influence on MPS signals. dm/dH analyses show that Néel relaxation is the dominant mechanism determining MPI response in smaller NPs (d0 < ≈ 20 nm). Larger NPs show hysteretic reversal when the applied field amplitude is large enough to overcome the coercivity. Linear variation of the MPS signal intensity with iron concentration but with uniform spatial resolution enables quantitative imaging for a range of applications, from high-concentration bolus chase imaging to low-concentration molecular imaging (while the authors' instrument is noise-limited to ≈ millimolar iron concentrations, nanomolar sensitivity is expected for MPI, theoretically). These results pave the way for future application of the authors' synthesized tracers for immobilized or in vivo targeted MPI of tissues.
-
The Essential Physics of Medical Imaging, Third Edition., Bushberg J. T., Seibert J. A., Leidholdt E. ⋯ Price: $199.99. ISBN 9780781780575 (hardcover). © 2013 Doody's Review Service. Doody's Review Service.