Med Phys
-
Comparative Study
Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study.
To study the performance of different dual energy computed tomography (DECT) techniques, which are available today, and future multi energy CT (MECT) employing novel photon counting detectors in an image-based material decomposition task. ⋯ Substantial differences in the performance of today's DECT approaches were found for the application of virtual non-contrast and iodine imaging. Future MECT with realistic photon counting detectors currently can only perform comparably to dual source DECT at 100 kV/Sn 140 kV. Dual source concepts with photon counting detectors could be a solution to this problem, promising a better performance.
-
Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. ⋯ Standalone MR is not the traditional choice for lung scans due to the low proton density, high magnetic susceptibility, and low T2 (∗) relaxation time in the lungs. By developing and validating this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique in its capability of combining structural information from MR with functional information from PET, shows promise in pulmonary imaging.
-
External beam radiotherapy with protons and heavier ions enables a tighter conformation of the applied dose to arbitrarily shaped tumor volumes with respect to photons, but is more sensitive to uncertainties in the radiotherapeutic treatment chain. Consequently, an independent verification of the applied treatment is highly desirable. For this purpose, the irradiation-induced β(+)-emitter distribution within the patient is detected shortly after irradiation by a commercial full-ring positron emission tomography/x-ray computed tomography (PET/CT) scanner installed next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). A major challenge to this approach is posed by the small number of detected coincidences. This contribution aims at characterizing the performance of the used PET/CT device and identifying the best-performing reconstruction algorithm under the particular statistical conditions of PET-based treatment monitoring. Moreover, this study addresses the impact of radiation background from the intrinsically radioactive lutetium-oxyorthosilicate (LSO)-based detectors at low counts. ⋯ Under the poor statistical conditions in PET-based treatment monitoring, improved results can be achieved by considering PSF and TOF information during image reconstruction and by applying less iterations than in conventional nuclear medicine imaging. Geometrical fidelity and image noise are mainly limited by the low number of true coincidences, not the high LSO-related random background. The retrieved results might also impact other emerging PET applications at low counting statistics.
-
(90)Y -positron emission tomography (PET) imaging is becoming a recognized modality for postinfusion quantitative assessment following radioembolization therapy. However, the extremely low counts and high random fraction associated with (90)Y -PET may significantly impair both qualitative and quantitative results. The aim of this work was to study image quality and noise level in relation to the quantification and bias performance of two types of Siemens PET scanners when imaging (90)Y and to compare experimental results with clinical data from two types of commercially available (90)Y microspheres. ⋯ Due to the low counts and high random fraction, accurate image quantification of (90)Y during selective internal radionuclide therapy is affected by random coincidence estimation, scatter correction, and any positivity constraint of the algorithm. Nevertheless, phantom and patient studies showed that the impact of number of true and random coincidences on quantitative results was found to be limited as long as ordinary Poisson ordered subsets expectation maximization reconstruction algorithms with random smoothing are used. Adding PSF correction and TOF information to the reconstruction greatly improves the image quality in terms of bias, variability, noise reduction, and detectability. On the patient studies, the total activity in the field of view is in general accurately measured by Biograph mCT and slightly overestimated by the Biograph TruePoint.
-
The authors' purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. ⋯ Electrical models for the IPG case and electrode are suggested, and the method is proposed to determine the parameter values. The concept of matching of the electrode to the lead is clarified using the defined electrode impedance and the lead Thevenin impedance. The effect of the IPG case and electrode on tip heating can be predicted using the proposed theory. With these models, understanding the tissue heating due to the implants becomes easier. Also, these models are beneficial for implant safety testers and designers. Using these models, worst case conditions can be determined and the corresponding implant test experiments can be planned.