Med Phys
-
A constant relative biological effectiveness (RBE) of 1.1 is currently used in proton radiation therapy to account for the increased biological effectiveness compared to photon therapy. However, there is increasing evidence that proton RBE vary with the linear energy transfer (LET), the dose per fraction, and the type of the tissue. Therefore, this study aims to evaluate the impact of disregarding variations in RBE when comparing proton and photon dose plans for prostate treatments for various fractionation schedules using published RBE models and several α/β assumptions. ⋯ Model predicted RBE values may differ substantially from 1.1. This is most pronounced for fractionation doses of around 2 Gy(RBE) with higher doses to the target and the OARs, whereas the effect seems to be of less importance for the hypofractionated schedules. This could result in misleading conclusions when comparing proton plans to photon plans. By accounting for a variable RBE in the optimization process, robust and clinically acceptable dose plans, with the potential of lowering rectal NTCP, may be generated by reoptimizing the physical dose. However, the direction and magnitude of the changes in the physical proton dose to the prostate are dependent on RBE model and α/β assumptions and should therefore be used conservatively.
-
Stereoscopic x-ray image guided radiotherapy for lung tumors is often hindered by bone overlap and limited soft-tissue contrast. This study aims to evaluate the feasibility of dual-energy imaging techniques and to optimize parameters of the ExacTrac stereoscopic imaging system to enhance soft-tissue imaging for application to lung stereotactic body radiation therapy. ⋯ Dual-energy soft-tissue imaging is feasible without additional imaging dose using the ExacTrac stereoscopic imaging system with optimized acquisition parameters and no beam filtration. Addition of a single tin filter for both the high and low energies has noticeable improvements on dual-energy imaging with optimized parameters. Clinical implementation of a dual-energy technique on ExacTrac stereoscopic imaging could improve lung tumor visibility.
-
This study introduces a new hybrid ZTE/Dixon MR-based attenuation correction (MRAC) method including bone density estimation for PET/MRI and quantifies the effects of bone attenuation on metastatic lesion uptake in the pelvis. ⋯ A hybrid ZTE/Dixon MRAC method was developed and applied to pelvic regions in an integrated TOF PET/MRI, demonstrating improved MRAC. This new method included bone density estimation, through which PET quantification is improved.
-
We would like to thank Dr. Brivio et al. [Med. Phys.] for their comment on our recent paper. ⋯ Brivio et al. attribute the potential difference to the disparity in the work functions between guard and collecting electrodes composed of different materials. However, all of the microchambers investigated in Miller et al. contained a guard and collecting electrode which were composed of the same material. Therefore, the explanation offered by Brivio et al. that "the electric potential perturbation arises from the work function difference of the disparate materials electrodes" does not explain the polarity effects exhibited by the microchambers investigated in Miller et al., all of which contain electrodes composed of the same materials.