Med Phys
-
This study developed and validated a Motion Artifact Quantification algorithm to automatically quantify the severity of motion artifacts on coronary computed tomography angiography (CCTA) images. The algorithm was then used to develop a Motion IQ Decision method to automatically identify whether a CCTA dataset is of sufficient diagnostic image quality or requires further correction. ⋯ The Motion Artifact Quantification algorithm calculated accurate (<10% error) motion artifact scores using the automated segmentation methods. The developed algorithms demonstrated high sensitivity (91.3%) and specificity (71.4%) in identifying datasets of insufficient image quality. The developed algorithms for automatically quantifying motion artifact severity may be useful for comparing acquisition techniques, improving best-phase selection algorithms, and evaluating motion compensation techniques.
-
While previous studies have demonstrated the feasibility and potential usefulness of quantitative non-Gaussian diffusional kurtosis imaging (DKI) of the brain, more recent research has focused on oncological application of DKI in various body regions such as prostate, breast, and head and neck (HN). Given the need to minimize scan time during most routine magnetic resonance imaging (MRI) acquisitions of body regions, diffusion-weighted imaging (DWI) with only three orthogonal diffusion weighting directions (x, y, z) is usually performed. Moreover, as water diffusion within malignant tumors is generically thought to be almost isotropic, DWI with only three diffusion weighting directions is considered sufficient for oncological application and it represents the de facto standard in body DKI. In this context, since the kurtosis tensor and diffusion tensor cannot be obtained, the averages of the three directional (Kx , Ky , Kz ) and (Dx , Dy , Dz ) - namely K and D, respectively - represent the best-possible surrogates of directionless DKI-derived indices of kurtosis and diffusivity, respectively. This would require fitting the DKI model to the diffusion-weighted images acquired along each direction (x, y, z) prior to averaging. However, there is a growing tendency to perform only a single fit of the DKI model to the geometric means of the images acquired with diffusion-sensitizing gradient along (x, y, z), referred to as trace-weighted (TW) images. To the best of our knowledge, no in vivo studies have evaluated how TW images affect estimates of DKI-derived indices of K and D. Thus, the aim of this study was to assess the potential bias and error introduced in estimated K and D by fitting the DKI model to the TW images in HN cancer patients. ⋯ In HN cancer, the fit of the DKI model to TW images can introduce bias and error in the estimation of K and D, which may be non-negligible for single lesions, and should hence be adopted with caution.