Med Phys
-
Myocardial infarct (MI) may consist of an infarct core (IC) and a heterogeneous, semi-viable border zone (BZ). Patients with chronic MI in the left ventricular (LV) myocardium are at increased risk of developing ventricular arrhythmias, and may therefore qualify for implantable cardioverter defibrillator (ICD) therapy. Indices based on MI mass, as determined by cardiac magnetic resonance (CMR) imaging, are shown to be sensitive in predicting adverse ventricular arrhythmic events. However, several factors, such as imaging technique and spatial resolution affect the accuracy of MI mass quantification. The aim of this study was to compare the MI masses determined by T1-mapping CMR techniques to those of conventional late Gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) using inversion recovery fast gradient echo (IR-FGRE). We additionally aimed to investigate the effect of diminishing image resolution on quantification of the MI mass and its ability to predict appropriate ICD therapy. ⋯ While estimated IC masses were consistent among all three techniques, the estimated BZ masses were not consistent, especially when spatial resolution of images differed between the techniques. In particular, our study showed that diminished image resolution caused an increase in estimation of the BZ mass, likely due to partial volume effects, which led to a reduced sensitivity in the prediction of appropriate ICD therapy.