Med Phys
-
T1-mapping cardiac magnetic resonance (CMR) imaging permits noninvasive quantification of myocardial fibrosis (MF); however, manual delineation of myocardial boundaries is time-consuming and introduces user-dependent variability for such measurements. In this study, we compare several automated pipelines for myocardial segmentation of the left ventricle (LV) in native and contrast-enhanced T1-maps using fully convolutional neural networks (CNNs). ⋯ The direct U-Net-based myocardial segmentation technique provided accurate, fully automated segmentations in native and contrast-enhanced T1-maps. Myocardial borders can alternatively be segmented from spatially matched CINE images and applied to T1-maps via deformation and propagation through a modality-independent neighborhood descriptor (MIND). The direct U-Net approach is more efficient in myocardial segmentation of native T1-maps and eliminates cross-technique dependence. However, the CINE-registration-based technique may be more appropriate for contrast-enhanced T1-maps and/or for patients with dense regions of replacement fibrosis, such as those with ICM.