Med Phys
-
To develop a two-stage three-dimensional (3D) convolutional neural networks (CNNs) for fully automated volumetric segmentation of pancreas on computed tomography (CT) and to further evaluate its performance in the context of intra-reader and inter-reader reliability at full dose and reduced radiation dose CTs on a public dataset. ⋯ A 3D CNN developed on the largest dataset of CTs is accurate for fully automated volumetric pancreas segmentation and is generalizable across a wide range of CT slice thicknesses, radiation dose, and patient gender. This 3D CNN offers a scalable tool to leverage biomarkers from pancreas morphometrics and radiomics for pancreatic diseases including for early pancreatic cancer detection.
-
Parametric imaging using the Patlak model has been shown to provide improved lesion detectability and specificity. The Patlak model requires both tissue time-activity curves (TACs) after equilibrium and knowledge of the input function from the start of injection. Therefore, the conventional dynamic scanning protocol typically starts from the radiotracer injection all the way to equilibrium. In this paper, we propose the use of hybrid population-based and model-based input function estimation and evaluate its use for whole-body Patlak analysis, in order to reduce the total scan time and simplify clinical Patlak parametric imaging protocols. Possible quantitative errors caused by the simplified scanning protocol were also analyzed both theoretically and with the use of clinical data. ⋯ We have proposed a simplified whole-body scanning protocol that utilizes both population-based input function and model-based input function. The error from the population-based function was found to only affect the global scale and the overall quantitative impact can be predicted using our proposed formulas.