Med Phys
-
T1-mapping cardiac magnetic resonance (CMR) imaging permits noninvasive quantification of myocardial fibrosis (MF); however, manual delineation of myocardial boundaries is time-consuming and introduces user-dependent variability for such measurements. In this study, we compare several automated pipelines for myocardial segmentation of the left ventricle (LV) in native and contrast-enhanced T1-maps using fully convolutional neural networks (CNNs). ⋯ The direct U-Net-based myocardial segmentation technique provided accurate, fully automated segmentations in native and contrast-enhanced T1-maps. Myocardial borders can alternatively be segmented from spatially matched CINE images and applied to T1-maps via deformation and propagation through a modality-independent neighborhood descriptor (MIND). The direct U-Net approach is more efficient in myocardial segmentation of native T1-maps and eliminates cross-technique dependence. However, the CINE-registration-based technique may be more appropriate for contrast-enhanced T1-maps and/or for patients with dense regions of replacement fibrosis, such as those with ICM.
-
The purpose of this study was to distinguish axillary lymph node (ALN) status using preoperative breast DCE-MRI radiomics and compare the effects of two-dimensional (2D) and three-dimensional (3D) analysis. ⋯ Radiomic features from segmented tumor region in breast MRI were associated with ALN status. The separate radiomic analysis on 3D tumor volume showed a similar effect to the 2D analysis on the single representative slice in the tested machine learning classifiers.
-
Ultrasound image segmentation is a challenging task due to a low signal-to-noise ratio and poor image quality. Although several approaches based on the convolutional neural network (CNN) have been applied to ultrasound image segmentation, they have weak generalization ability. We propose an end-to-end, multiple-channel and atrous CNN designed to extract a greater amount of semantic information for segmentation of ultrasound images. ⋯ The proposed MA-Net accurately segments ultrasound images with high generalization, and therefore, it offers a useful tool for diagnostic application in ultrasound images.
-
When using convolutional neural networks (CNNs) for segmentation of organs and lesions in medical images, the conventional approach is to work with inputs and outputs either as single slice [two-dimensional (2D)] or whole volumes [three-dimensional (3D)]. One common alternative, in this study denoted as pseudo-3D, is to use a stack of adjacent slices as input and produce a prediction for at least the central slice. This approach gives the network the possibility to capture 3D spatial information, with only a minor additional computational cost. ⋯ In the general case, multislice inputs appear not to improve segmentation results over using 2D or 3D CNNs. For the particular case of 13 input slices, the proposed novel pseudo-3D method does appear to have a slight advantage across all data sets compared to all other methods evaluated in this work.
-
Complementary information obtained from multiple contrasts of tissue facilitates physicians assessing, diagnosing and planning treatment of a variety of diseases. However, acquiring multiple contrasts magnetic resonance images (MRI) for every patient using multiple pulse sequences is time-consuming and expensive, where, medical image synthesis has been demonstrated as an effective alternative. The purpose of this study is to develop a unified framework for multimodal MR image synthesis. ⋯ We proposed a novel multimodal MR image synthesis method based on a unified generative adversarial network. The network takes an image and its modality label as inputs and synthesizes multimodal images in a single forward pass. The results demonstrate that the proposed method is able to accurately synthesize multimodal MR images from a single MR image.