Radiat Oncol
-
This is the final report of a prospective phase I study which evaluated the feasibility, toxicities, and biochemical control in prostate cancer patients treated with a hypofractionated boost utilizing a fiducial marker-based daily image guidance strategy and small patient-specific PTV margins. ⋯ Our study demonstrates that the use of prostate fiducial markers in combination with a daily online image guidance protocol permits reduced, patient-specific PTV margins in a hypofractionated treatment scheme. This treatment planning and delivery strategy was well tolerated in the intermediate time frame. The use of very small PTV margins did not result in excessive failures when compared to other radiation regimens of similar radiobiological intensity.
-
To compare highly sophisticated intensity-modulated radiotherapy (IMRT) delivered by either helical tomotherapy (HT), RapidArc (RA), IMRT with protons (IMPT) in patients with locally advanced cervical cancer. ⋯ All modern techniques (were proved to be dosimetrically adequate regarding coverage, conformity and homogeneity of the target. Protons offered the best sparing of small bowel and rectum and therefore could contribute to a significant reduction of acute and late toxicity in cervical cancer treatment.
-
To demonstrate that novice dosimetry planners efficiently create clinically acceptable IMRT plans for head and neck cancer (HNC) patients using a commercially available multicriteria optimization (MCO) system. ⋯ MCO planning enables novice treatment planners to create high quality IMRT plans for HNC patients. Plans were created with vastly reduced planning times, requiring less resources and a short learning curve.
-
Gastrointestinal (GI) toxicity is a common effect following radiation therapy (RT) for prostate cancer. Purpose of the present work is to compare two Normal Tissue Complication Probability (NTCP) modelling approaches for prediction of late radio-induced GI toxicity after prostate external beam radiotherapy. ⋯ We derived the parameters of the LKB model for mild\moderate GI toxicity prediction and we compared its performance with that of a data-driven multivariate model. Compared to LKB, the multivariate model confirmed a higher predictive power as showed by the AUC values.