Clinical pharmacology and therapeutics
-
Clin. Pharmacol. Ther. · Nov 1995
Clinical TrialPharmacodynamic modeling of the electroencephalographic effects of flumazenil in healthy volunteers sedated with midazolam.
The purpose of this study was to model pharmacodynamically the reversal of midazolam sedation with flumazenil. Ten human volunteers underwent four different sessions. In session 1, individual midazolam pharmacokinetics and electroencephalographic pharmacodynamics were determined. ⋯ For a light sedation level, with a mean midazolam plasma concentration of 160 +/- 64 ng/ml, the mean half-life of the equilibration rate constant of flumazenil reversal is 5.0 +/- 2.5 minutes, and the mean effect site concentration causing 50% of Emax is 13.7 +/- 5.8 ng/ml. For a deep level of sedation, with a mean midazolam plasma concentration of 551 +/- 196 ng/ml, the mean half-life of the equilibration rate constant is 3.9 +/- 1.5 minutes, and the mean effect site concentration causing 50% of Emax is 20.6 +/- 6.8 ng/ml. This study provides an estimate of the magnitude of the blood/central nervous system equilibration delay for flumazenil antagonism of midazolam sedation and further defines the usefulness of the electroencephalogram as a measure of midazolam pharmacodynamic effect.