Circulation research
-
Circulation research · Aug 2001
Review Comparative StudyClinical imaging of the high-risk or vulnerable atherosclerotic plaque.
The study of atherosclerotic disease during its natural history and after therapeutic intervention will enhance our understanding of disease progression and regression and aid in selecting appropriate treatments. Several invasive and noninvasive imaging techniques are available to assess atherosclerotic vessels. ⋯ We will present the different imaging modalities that have been used for the direct assessment of the carotid, aortic, and coronary atherosclerotic plaques. We will review in detail the use of high-resolution, multicontrast magnetic resonance for the noninvasive imaging of vulnerable plaques and the characterization of plaques in terms of their various components (ie, lipid, fibrous, calcium, or thrombus).
-
Circulation research · Aug 2001
Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy.
Our previous studies have demonstrated that inhaled nitric oxide (NO) decreases nitric oxide synthase (NOS) activity in vivo and that this inhibition is associated with rebound pulmonary hypertension upon acute withdrawal of inhaled NO. We have also demonstrated that inhaled NO elevates plasma endothelin-1 (ET-1) levels and that pretreatment with PD156707, an ETA receptor antagonist, blocks the rebound hypertension. The objectives of this study were to further elucidate the role of ET-1 in the rebound pulmonary hypertension upon acute withdrawal of inhaled NO. ⋯ The nitration of eNOS was also reduced by 40% in PD156707-treated lambs (P<0.05). These data suggest that the reduction of NOS activity associated with inhaled NO therapy may involve ETA receptor-mediated superoxide production. ETA receptor antagonists may prevent rebound pulmonary hypertension by protecting endogenous eNOS activity during inhaled NO therapy.
-
Circulation research · Aug 2001
Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels.
It has been assumed that all G(i)-coupled receptors trigger the protective action of preconditioning by means of an identical intracellular signaling pathway. To test this assumption, rabbit hearts were isolated and perfused with Krebs buffer. All hearts were subjected to a 30-minute coronary artery occlusion followed by 120 minutes of reperfusion. ⋯ In contrast, protection by adenosine or its analog N(6)-(2-phenylisopropyl) adenosine could not be blocked by either MPG or 5-HD. Therefore, whereas most of the tested agonists trigger protection by a pathway that requires opening of mitochondrial K(ATP) channels and production of free radicals, the protective action of adenosine is not dependent on either of these steps. Hence, it cannot be assumed that all G(i)-coupled receptors use the same signal transduction pathways to trigger preconditioning.