Circulation research
-
Circulation research · Oct 2004
Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle.
In cardiac muscle Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) is initiated by Ca2+ influx via L-type Ca2+ channels. At present, the mechanisms underlying termination of SR Ca2+ release, which are required to ensure stable excitation-contraction coupling cycles, are not precisely known. However, the same mechanism leading to refractoriness of SR Ca2+ release could also be responsible for the termination of CICR. ⋯ Our results suggest that SR Ca2+ refilling mediated by the SR Ca2+-pump corresponds to the rate-limiting step for recovery from CICR refractoriness. Thus, the Ca2+ sensitivity of CICR appears to be regulated by SR Ca2+ content, possibly resulting from a change in the steady-state Ca2+ sensitivity and in the gating kinetics of the SR Ca2+ release channels (ryanodine receptors). During Ca2+ release, the concomitant reduction in Ca2+ sensitivity of the ryanodine receptors might also underlie Ca2+ spark termination by deactivation.