Circulation research
-
Circulation research · Oct 2007
Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress.
Carbon monoxide (CO), a reaction product of the cytoprotective heme oxygenase (HO)-1, is antiapoptotic in a variety of models of cellular injury, but the precise mechanisms remain to be established. In human umbilical vein endothelial cells, exogenous CO activated Nrf2 through the phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK), resulting in HO-1 expression. CO-induced activation of PERK was followed by the phosphorylation of eukaryotic translation initiation factor 2alpha and the expression of activating transcription factor 4. ⋯ Similarly, endogenous CO produced from endothelial HO-1 induced by either exogenous CO or a pharmacological inducer was also cytoprotective against ER stress through C/EBP homologous protein suppression. Our findings suggest that CO renders endothelial cells resistant to ER stress not only by downregulating C/EBP homologous protein expression via p38 mitogen-activated protein kinase activation but also by upregulating Nrf2-dependent HO-1 expression via PERK activation. Thus, the HO-1/CO system might be potential therapeutics in vascular diseases associated with ER stress.