Circulation research
-
Circulation research · May 2005
Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells.
Inflammation is a key event in the development of atherosclerosis. Nuclear factor-kappaB (NF-kappaB) is important in the inflammatory response regulation. The effector peptide of the renin angiotensin system Angiotensin II (Ang II) activates NF-kappaB and upregulates some related proinflammatory genes. ⋯ Ang IV also increased the expression of proinflammatory factors under NF-kappaB control, such as MCP-1, IL-6, TNF-alpha, ICAM-1, and PAI-1, which were blocked by the AT4 antagonist. Our results reveal that Ang IV, via AT4 receptors, activates NF-kappaB pathway and increases proinflammatory genes. These data indicate that Ang IV possesses proinflammatory properties, suggesting that this Ang degradation peptide could participate in the pathogenesis of cardiovascular diseases.
-
Circulation research · Oct 2004
Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle.
In cardiac muscle Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) is initiated by Ca2+ influx via L-type Ca2+ channels. At present, the mechanisms underlying termination of SR Ca2+ release, which are required to ensure stable excitation-contraction coupling cycles, are not precisely known. However, the same mechanism leading to refractoriness of SR Ca2+ release could also be responsible for the termination of CICR. ⋯ Our results suggest that SR Ca2+ refilling mediated by the SR Ca2+-pump corresponds to the rate-limiting step for recovery from CICR refractoriness. Thus, the Ca2+ sensitivity of CICR appears to be regulated by SR Ca2+ content, possibly resulting from a change in the steady-state Ca2+ sensitivity and in the gating kinetics of the SR Ca2+ release channels (ryanodine receptors). During Ca2+ release, the concomitant reduction in Ca2+ sensitivity of the ryanodine receptors might also underlie Ca2+ spark termination by deactivation.
-
Circulation research · Sep 2004
Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension.
Chronic hypoxic pulmonary hypertension is associated with profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Recent studies show that transient receptor potential (TRPC) genes, which encode store-operated and receptor-operated cation channels, play important roles in Ca(2+) regulation and cell proliferation. However, the influence of chronic hypoxia on TRPC channels has not been determined. ⋯ They were accompanied by significant increases in basal, OAG-induced, and thapsigargin-induced cation entries in hypoxic PASMCs. Moreover, removal of Ca(2+) or inhibition of store-operated Ca(2+) entry with La(3+) and SK&F-96365 reversed the elevated basal [Ca(2+)](i) in PASMCs and vascular tone in PAs of chronic hypoxic animals, but nifedipine had minimal effects. Our results for the first time to our knowledge show that both store- and receptor-operated channels of PASMCs are upregulated by chronic hypoxia and contribute to the enhanced vascular tone in hypoxic pulmonary hypertension.
-
Circulation research · Jul 2004
ReviewMyocardial protection at a crossroads: the need for translation into clinical therapy.
Over the past 30 years, hundreds of experimental interventions (both pharmacologic and nonpharmacologic) have been reported to protect the ischemic myocardium in experimental animals; however, with the exception of early reperfusion, none has been translated into clinical practice. The National Heart, Lung, and Blood Institute convened a working group to discuss the reasons for the failure to translate potential therapies for protecting the heart from ischemia and reperfusion and to recommend new approaches to accomplish this goal. The Working Group concluded that cardioprotection in the setting of acute myocardial infarction, cardiac surgery, and cardiac arrest is at a crossroads. ⋯ A national preclinical research consortium would enable rational translation of important basic science findings into clinical use. The Working Group recommended that the National Institutes of Health proactively intervene to remedy current problems that impede translation of cardioprotective therapies. Their specific recommendations include the establishment of a preclinical consortium and the performance of 2 clinical studies that are likely to demonstrate effectiveness (phase III clinical trials of adenosine in acute myocardial infarction and cardiac surgery).