Diabetes
-
Defects in glucagon-like peptide 1 (GLP-1) secretion have been reported in some patients with type 2 diabetes after meal ingestion. We addressed the following questions: 1) Is the quantitative impairment in GLP-1 levels different after mixed meal or isolated glucose ingestion? 2) Which endogenous factors are associated with the concentrations of GLP-1? In particular, do elevated fasting glucose or glucagon levels diminish GLP-1 responses? ⋯ Deteriorations in glucose homeostasis can develop in the absence of any impairment in GIP or GLP-1 levels. This suggests that the defects in GLP-1 concentrations previously described in patients with long-standing type 2 diabetes are likely secondary to other hormonal and metabolic alterations, such as hyperglucagonemia. GIP and GLP-1 concentrations appear to be regulated by different factors and are independent of each other.
-
RhoA, a small GTPase protein, and its immediate downstream target, Rho kinase (ROCK), control a wide variety of signal transduction pathways. Recent studies have shown that fasudil, a selective ROCK inhibitor, may play a pivotal role in a number of pathological conditions, ranging from cardiovascular diseases to pulmonary hypertension and erectile dysfunction. Considerable evidence suggests that some of the beneficial effects of statins may also stem from their modulatory effects on RhoA/ROCK signaling. In the current study, we hypothesized that pharmacological blockade of the RhoA/ROCK pathway with either fasudil or simvastatin would ameliorate progression of diabetic nephropathy. ⋯ Based on these results, we propose that RhoA/ROCK blockade constitutes a novel approach to the treatment of diabetic nephropathy. Our data also suggest a critical role for RhoA/ROCK activation in the pathogenesis of diabetic nephropathy.