Diabetes
-
Gastric bypass surgery can dramatically improve type 2 diabetes. It has been hypothesized that by excluding duodenum and jejunum from nutrient transit, this procedure may reduce putative signals from the proximal intestine that negatively influence insulin sensitivity (SI). To test this hypothesis, resection or bypass of different intestinal segments were performed in diabetic Goto-Kakizaki and Wistar rats. ⋯ Glucose effectiveness did not change after operations in any group. While ileectomy increased plasma GIP levels, no changes in GIP or GLP-1 were observed after DJB and jejunectomy. These findings support the hypothesis that anatomic alterations of the proximal small bowel may reduce factors associated with negative influence on SI, therefore contributing to the control of diabetes after gastric bypass surgery.
-
Obesity causes increased classical and decreased alternative macrophage activation, which in turn cause insulin resistance in target organs. Because A2B adenosine receptors (ARs) are important regulators of macrophage activation, we examined the role of A2B ARs in adipose tissue inflammation and insulin resistance. A2B AR deletion impaired glucose and lipid metabolism in mice fed chow but not a high-fat diet, which was paralleled by dysregulation of the adipokine system, and increased classical macrophage activation and inhibited alternative macrophage activation. ⋯ Furthermore, in in vitro studies, we found that stimulation of A2B ARs suppressed free fatty acid-induced deleterious inflammatory and metabolic activation of macrophages. Moreover, AR activation upregulated the interleukin-4-induced expression of CCAAT/enhancer-binding protein-β, interferon regulatory factor 4, and peroxisome proliferator-activated receptor-γ in macrophages. Altogether, our results indicate that therapeutic strategies targeting A2B ARs hold promise for preventing adipose tissue inflammation and insulin resistance.