Diabetes
-
RhoA, a small GTPase protein, and its immediate downstream target, Rho kinase (ROCK), control a wide variety of signal transduction pathways. Recent studies have shown that fasudil, a selective ROCK inhibitor, may play a pivotal role in a number of pathological conditions, ranging from cardiovascular diseases to pulmonary hypertension and erectile dysfunction. Considerable evidence suggests that some of the beneficial effects of statins may also stem from their modulatory effects on RhoA/ROCK signaling. In the current study, we hypothesized that pharmacological blockade of the RhoA/ROCK pathway with either fasudil or simvastatin would ameliorate progression of diabetic nephropathy. ⋯ Based on these results, we propose that RhoA/ROCK blockade constitutes a novel approach to the treatment of diabetic nephropathy. Our data also suggest a critical role for RhoA/ROCK activation in the pathogenesis of diabetic nephropathy.
-
Three independent studies have shown that variation in the fat mass and obesity-associated (FTO) gene associates with BMI and obesity. In the present study, the effect of FTO variation on metabolic traits including obesity, type 2 diabetes, and related quantitative phenotypes was examined. ⋯ We validate that variation in FTO is associated with type 2 diabetes when not adjusted for BMI and with an overall increase in body fat mass. Furthermore, low physical activity seems to accentuate the effect of FTO rs9939609 on body fat accumulation.
-
Linkage to type 2 diabetes has been reported on chromosome 1q21-25 in Pima Indians. Fine mapping identified single nucleotide polymorphisms (SNPs) near the CACNA1E gene associated with this disease. CACNA1E encodes the voltage-dependent calcium channel Ca(v)2.3 Ca(2+), and mice lacking this channel exhibit impaired glucose tolerance and insulin secretion. Therefore, CACNA1E was investigated as a positional candidate gene. ⋯ A functional variant in CACNA1E contributes to type 2 diabetes susceptibility by affecting insulin action. This variant partially explains the linkage to type 2 diabetes on chromosome 1q21-25 in Pima Indians.
-
Muscle glucose uptake (MGU) is regulated by glucose delivery to, transport into, and phosphorylation within muscle. The aim of this study was to determine the role of limitations in glucose phosphorylation in the control of MGU during either physiological insulin stimulation (4 mU x kg(-1) x min(-1)) or exercise with chow or high-fat feeding. ⋯ In summary, impairments in whole-body metabolism and MGU due to high-fat feeding and partial HK II knockout combined during insulin stimulation are additive. In contrast, combining high-fat feeding and partial HK II knockout during exercise causes no greater impairment in MGU than the two manipulations independently. This suggests that MGU is impaired during exercise by high-fat feeding due to, in large part, a limitation in glucose phosphorylation. Together, these studies show that the high-fat-fed mouse is characterized by defects at multiple steps of the MGU system that are precipitated by different physiological conditions.
-
A reduced capacity for mitochondrial fatty acid oxidation in skeletal muscle has been proposed as a major factor leading to the accumulation of intramuscular lipids and their subsequent deleterious effects on insulin action. Here, we examine markers of mitochondrial fatty acid oxidative capacity in rodent models of insulin resistance associated with an oversupply of lipids. C57BL/6J mice were fed a high-fat diet for either 5 or 20 weeks. ⋯ Furthermore, oxidative enzyme activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, uncoupling protein (UCP) 3, and mitochondrial respiratory chain subunits were significantly elevated in fat-fed animals. A similar pattern was present in muscle of fat-fed rats, obese Zucker rats, and db/db mice, with increases observed for oxidative enzyme activity and expression of PGC-1alpha, UCP3, and subunits of the mitochondrial respiratory chain. These findings suggest that high lipid availability does not lead to intramuscular lipid accumulation and insulin resistance in rodents by decreasing muscle mitochondrial fatty acid oxidative capacity.