Sci Signal
-
Neurons in the insular cortex are activated by acute and chronic pain, and inhibition of neuronal activity in the insular cortex has analgesic effects. We found that in a mouse model in which peripheral nerve injury leads to the development of neuropathic pain, the insular cortex showed changes in synaptic plasticity, which were associated with a long-term increase in the amount of synaptic N-methyl-d-aspartate receptors (NMDARs), but not that of extrasynaptic NMDARs. ⋯ Finally, injecting NMDAR or GluN2B-specific antagonists into the insular cortex reduced behavioral responses to normally nonnoxious stimuli in the mouse model of neuropathic pain. Our results suggest that activity-dependent plasticity takes place in the insular cortex after nerve injury and that inhibiting the increase in NMDAR function may help to prevent or treat neuropathic pain.