Sci Signal
-
Changes in the actin cytoskeleton in neurons are associated with synaptic plasticity and may also be involved in mechanisms of nociception. We found that the LIM motif-containing protein kinases (LIMKs), which regulate actin dynamics, promoted the development of inflammatory hyperalgesia (excessive sensitivity to painful stimuli). Pain is sensed by the primary sensory neurons of dorsal root ganglion (DRG). ⋯ Inflammatory stimuli stimulated actin polymerization and enhanced the response of the cation channel TRPV1 (transient receptor potential V1) to capsaicin in DRG neurons, effects that were reversed by the knockdown of LIMK or preventing cofilin phosphorylation. Furthermore, inflammatory stimuli caused the serine phosphorylation of TRPV1, which was abolished by preventing cofilin phosphorylation in DRG neurons. We conclude that LIMK-dependent actin rearrangement in primary sensory neurons, leading to altered TRPV1 sensitivity, is involved in the development of inflammatory hyperalgesia.