Stem Cell Res Ther
-
Mesenchymal stem cells (MSCs) have been studied for the treatment of acute liver failure (ALF) for several years. MSCs may exert their effect via complex paracrine mechanisms. Heme oxygenase (HO) 1, a rate-limiting enzyme in heme metabolism, exerts a wide range of anti-inflammatory, anti-apoptotic and immunoregulatory effects in a variety of diseases. However, the relationship between MSCs and HO-1 in the treatment of ALF is still unclear. We investigated the preventive and therapeutic potential of intravenously administered BMSCs. ⋯ These findings may correlate with inhibition of nuclear factor-κ B activation. BMSCs ameliorated ALF by increasing the HO-1 expression, which reduced PMN infiltration and function, and played an important anti-inflammatory and anti-apoptotic role. Proposed mechanism by which BMSCs reduce inflammation, neutrophil activation, and hepatocyte apoptosis and promote hepatocyte proliferation via HO-1. BMSCs increase HO-1 expression in liver via Nrf2. HO-1 protects against LPS/D-Gal-induced ALF by inhibiting neutrophil infiltration and inflammatory burst, and hepatocyte apoptosis and necrosis. HO-1 also promotes hepatocyte proliferation.
-
Osteoarthritis (OA) is the most common joint disease worldwide. In the past decade, mesenchymal stem cells (MSCs) have been used widely for the treatment of OA. A potential mechanism of MSC-based therapies has been attributed to the paracrine secretion of trophic factors, in which exosomes may play a major role. In this study, we aimed to compare the effectiveness of exosomes secreted by synovial membrane MSCs (SMMSC-Exos) and exosomes secreted by induced pluripotent stem cell-derived MSCs (iMSC-Exos) on the treatment of OA. ⋯ The present study demonstrated that iMSC-Exos have a greater therapeutic effect on OA than SMMSC-Exos. Because autologous iMSCs are theoretically inexhaustible, iMSC-Exos may represent a novel therapeutic approach for the treatment of OA.
-
Mesenchymal stem/stromal cells (MSCs) represent an attractive tool for cell-based cancer therapy mainly because of their ability to migrate to tumors and to release bioactive molecules. However, the impact of MSCs on tumor growth has not been fully established. We previously demonstrated that murine MSCs show a strong tropism towards glioblastoma (GBM) brain xenografts and that these cells are able to uptake and release the chemotherapeutic drug paclitaxel (PTX), maintaining their tropism towards the tumor. Here, we address the therapy-relevant issue of using MSCs from human donors (hMSCs) for local or systemic administration in orthotopic GBM models, including xenografts of patient-derived glioma stem cells (GSCs). ⋯ hMSCs have a therapeutic potential in GBM brain xenografts which is also expressed against the GSC population. In this context, PTX loading of hMSCs seems to play a minor role.