Stem Cell Res Ther
-
The induced pluripotent stem cell (iPSC) technology allows generation of patient-specific pluripotent stem cells, thereby providing a novel cell-therapy platform for severe degenerative diseases. One of the key issues for clinical-grade iPSC derivation is the accessibility of donor cells used for reprogramming. ⋯ Because the use of blood cells allows minimally invasive tissue procurement under GMP conditions and rapid cellular reprogramming, mobilized HPCs and unmobilized PBMCs would be ideal somatic cell sources for clinical-grade iPSC derivation, especially from diabetes patients complicated by slow-healing wounds.
-
Amyloid precursor protein (APP) fascinates cell biologists because it is proteolytically processed to generate multiple peptides, including amyloid-β, which is implicated in Alzheimer's disease. However, a large body of data also shows that the extracellular soluble fragment of APP produced by α-secretase (sAPPα) is neuroprotective and promotes neuronal outgrowth. A study by Demars and colleagues appearing in the previous issue provides data showing that sAPPα is a general growth factor for stem cells of multiple lineages. Thus, APP seems to play complex and disparate roles in neurodegeneration and neuroprotection.