Adv Exp Med Biol
-
Vasopressin (AVP) and oxytocin (OT) are cyclic nonapeptides whose actions are mediated by activation of specific G protein-coupled receptors (GPCRs) currently classified into V1-vascular (V1R), V2-renal (V2R) and V3-pituitary (V3R) AVP receptors and OT receptors (OTR). The cloning of the different members of the AVP/OT family of receptors now allows the extensive molecular pharmacological characterization of a single AVP/OT receptor subtype in stably transfected mammalian cell lines. The human V1-vascular (CHO-V1), V2-renal (CHO-V2), V3-pituitary (CHO-V3) and oxytocin (CHO-OT) receptors stably expressed in CHO cells display distinct binding profiles for 18 peptide and 5 nonpeptide AVP/OT analogs. ⋯ None of the 22 AVP/OT analogs tested has a better affinity for the human V3R than AVP itself. Several peptide antagonists do not select well between V1R and OTR. These results underscore the need for developing specific and potent analogs interacting specifically with a given human AVP/OT receptor subtype.
-
As with diphtheria, immunity to pertussis is complex because it involves both individual and community protection against infection with B. pertussis. Although B. pertussis has at least five proteins required for virulence and an additional two "toxic" components, only serum neutralizing antibodies to PT (antitoxin) have been shown to confer immunity to pertussis.
-
Review
Vasopressin regulates adrenal functions by acting through different vasopressin receptor subtypes.
In mammals, vasopressin is known to be synthesized in the hypothalamus and released in the blood stream at the pituitary level. This neuropeptide is also synthesized and secreted by the adrenal medulla in many species including human. Moreover, agents like acetylcholine and corticotropin releasing factor stimulates its basal secretion. ⋯ The adrenal medulla secretes AVP and exhibits functional vasopressin receptors. The adrenal cortex also possesses functional vasopressin receptors and is in contact with adrenal medulla via "medullary rays". We may thus reasonably conclude that AVP physiologically regulates adrenal gland functions via autocrine/paracrine mechanisms.