Adv Exp Med Biol
-
The technique of galvanic vestibular stimulation (GVS) has been used for a long time. The stimulus produces stereotyped automatic postural and ocular responses. The mechanisms underlying these responses are not understood although they are commonly attributed to altered otolith output. ⋯ Bilateral bipolar GVS should also produce an otolith signal consistent with tilt towards the cathodal side or a translational acceleration towards the anodal side. The expected responses for other configurations of GVS are also described. The model appears consistent with published data on the ocular and postural responses to GVS, and suggests other testable hypotheses concerning postural, ocular and perceptual responses to GVS.
-
The mechanisms of sensory transduction in the fine nerve terminals of free nerve endings supplied by Adelta and C sensory axons are largely a matter of speculation. This is because the nerve terminals are small and inaccessible, particularly in intact tissues like skin. However, some of the difficulties associated with investigating the physiology of fine nerve terminals have recently been overcome using an in vitro preparation of the guinea-pig cornea that allows nerve terminal impulses (NTIs) to be recorded extracellularly from single polymodal and cold receptor nerve terminals. ⋯ At the same temperature, NTIs are larger in amplitude and faster in time course during heating than those during cooling. The differential effect of heating and cooling on NTI shape is not considered to result simply from the temperature dependence of voltage-activated conductance kinetics or activity dependent changes in membrane excitability. Instead, changes in NTI shape may reflect changes in nerve terminal membrane potential that underlie the process of thermal transduction.