Adv Exp Med Biol
-
Inter-individual variability in response to pharmacotherapy has provoked a higher demand to personalize medical decisions. As the field of pharmacogenomics has served to translate personalized medicine from concept to practice, the contribution of the "omics" disciplines to the era of precision medicine seems to be vital in improving therapeutic outcomes. Although we have observed significant advances in the field of genomics towards personalized medicine , the field of proteomics-with all its capabilities- is still in its infancy towards the area of personalized precision medicine. ⋯ However, other applications in proteomics such as "individual" proteome sequencing with its signature PTMs, have not been fully investigated as compared to the achievements in the genomics discipline This infers that proteomics research work has promising potential, yet to be discovered, in the precision medicine and comprises a major component of the personalized medicine infrastructure as it allows individual characterization of disease at the protein level. To conclude, the field of proteomics-based personalized medicine is still in its infancy compared to genomics field due to several technical and instrumentation-based obstacles; however, we anticipate to have this initiative leading in the coming future. This chapter will discuss briefly how neuroproteomics can impact personalized medicine in the fields of neurodegenerative disorders particularly in Alzheimer's disease and brain injury .
-
Lung cancer is the leader malignancy worldwide accounting 1.5 millions of deaths every year. In the United States the 5 year-overall survival is less than 20% for all the newly diagnosed patients. Cisplatin-based cytotoxic chemotherapy for unresectable or metastatic NSCLC patients in the first line of treatment, and docetaxel in the second line, have achieved positive results but with limited benefit in overall survival. ⋯ In the other side high PD-1 expression patients that undergo immunotherapy treatment achieve better results in terms of survival with lesser toxicity. Combining different immunotherapy treatments, combination of immunotherapy with chemotherapy or with targeted treatment are under research with some promising PRELIMINARY results in non-small cell lung cancer patients. This chapter attempts to summarize the development of immunotherapy treatment in non-small cell lung cancer patients and explain the results that have leaded immunotherapy as a new standard of treatment in selected NSCLC patients.
-
Several factors must be considered to successfully integrate immunotherapy with radiation into clinical practice. One such factor is that concepts arising from preclinical work must be tested in combination with radiation in preclinical models to better understand how combination therapy will work in patients; examples include checkpoint inhibitors, tumor growth factor-beta (TGF-β) inhibitors, and natural killer (NK) cell therapy. ⋯ Traditional forms of radiation in particular pose challenges for combination trials with immunotherapy. This chapter explores these issues in more detail and provides insights as to how radiation therapy can be optimized to combine with immunotherapy.
-
Beta-thalassemia and sickle cell anemia are two of the most common diseases related to the hemoglobin protein. In these diseases, the beta-globin gene is mutated, causing severe anemia and ineffective erythropoiesis. Patients can additionally present with a number of life-threatening co-morbidities, such as stroke or spontaneous fractures. ⋯ Initial gene therapy work was done with oncoretroviral vectors, but has since shifted to lentiviral vectors. Currently, there are a few clinical trials underway to test the curative potential of some of these lentiviral vectors. This review will highlight the work done thus far, and present the challenges still facing gene therapy, such as genome toxicity concerns and achieving sufficient transgene expression to cure those with the most severe forms of thalassemia.
-
Basic knowledge of pulmonary embolism is relevant to most practicing physicians. Many medical specialties care for patients with increased risk of pulmonary embolism, why recognition of relevant symptoms, a thorough medical history, assessment of the clinical condition of the patient and possibly referral to a relevant facility should be a part of the skills of all clinicians. ⋯ The information available from the medical history, clinical assessment and basic investigation form the basis on which the decision about further diagnostic imaging and intensity of treatment and monitoring can be made. These decisions can be guided by clinical scoring systems like the Wells score, revised Geneva score and the PESI.