Adv Exp Med Biol
-
Two major guide-line committees (JNC-8 and NICE UK) have dropped beta-blockers as first-line therapy in the treatment of hypertension. Also, recent meta-analyses (that do not take age into account) have concluded that beta-blockers are inappropriate first-line agents in the treatment of hypertension. This review seeks to shed some light on the "rights and wrongs" of such actions and conclusions. ⋯ Primary/essential hypertension in younger/middle-age is underpinned by high sympathetic nerve activity. In this age-group high resting heart rates and high plasma norepinephrine levels (independent of blood pressure) are linked to premature cardiovascular events and death. Thus, anti-hypertensive agents that increase sympathetic nerve activity ie diuretics, dihydropyridine calcium blockers, and ARBs, are inappropriate first-line choices in this younger age-group. Beta-blockers perform well vs randomised placebo and other antihypertensive agents regarding reduced risk of death/stroke/myocardial infarction in younger (<60 years) hypertensive subjects, and are a reasonable first-line choice of therapy (certainly in men). These facts should be reflected in the recommendations of guideline committees around the world.
-
Autism spectrum disorder (ASD), one of the most common childhood neurodevelopmental disorders (NDDs), is diagnosed in 1 of every 68 children. ASD is incredibly heterogeneous both clinically and aetiologically. The etiopathogenesis of ASD is known to be complex, including genetic, environmental and epigenetic factors. ⋯ In this chapter we aim to summarize some of the important literature that supports a role for epigenetics in the underlying molecular mechanism of ASD. We provide evidence from work in genetics, from environmental exposures and finally from more recent studies aimed at directly determining ASD-specific epigenetic patterns, focusing mainly on DNA methylation (DNAm). Finally, we briefly discuss some of the implications of current research on potential epigenetic targets for therapeutics and novel avenues for future work.
-
Multicenter Study
Antibacterial Bioactive Glass, S53P4, for Chronic Bone Infections - A Multinational Study.
Osteomyelitis is an infectious process in bone that occasionally leads to bone destruction. Traditionally, the surgical treatment procedure is performed in combination with systemic and local antibiotics as a two-stage procedure that uses autograft or allograft bone for filling of the cavitary defect. Bioactive glass (BAG-S53P4) is a bone substitute with proven antibacterial and bone bonding properties. ⋯ The minimum follow-up was 1 year (12-95 months, median 31). The cure rate was 104/116, the total success rate 90 % and most of the patients showed a rapid recovery. The study shows that (BAG-S53P4) can be used in a one-stage procedure in treatment of osteomyelitis with excellent results.
-
Interleukin-2 (IL-2) is a very well-known cytokine that has been studied for the past 35 years. It plays a major role in the growth and proliferation of many immune cells such NK and T cells. It is an important immunotherapy cytokine for the treatment of various diseases including cancer. ⋯ OS, our disease of interest, has a peak incidence in the adolescent and young adult years. Our goal is to complete this trial in the next 2 years. In this chapter, we summarize the different effects of IL-2 and cover the advantages of the aerosol delivery route for diseases of the lung with an emphasis on some of our most recent work using combination therapy aerosol IL-2 and NK cells for the treatment of OS lung metastases.
-
Huntington's disease (HD) is a genetic, fatal autosomal dominant neurodegenerative disorder typically occurring in midlife with symptoms ranging from chorea, to dementia, to personality disturbances (Philos Trans R Soc Lond Ser B Biol Sci 354:957-961, 1999). HD is inherited in a dominant fashion, and the underlying mutation in all cases is a CAG trinucleotide repeat expansion within exon 1 of the HD gene (Cell 72:971-983, 1993). ⋯ The rate-limiting mechanism(s) of neurodegeneration in HD still remains elusive: many different processes are commonly disrupted in HD cell lines and animal models, as well as in HD patient cells (Eur J Neurosci 27:2803-2820, 2008); however, epigenetic-chromatin deregulation, as determined by the analysis of DNA methylation, histone modifications, and noncoding RNAs, has now become a prevailing feature. Thus, the overarching goal of this chapter is to discuss the current status of the literature, reviewing how an aberrant epigenetic landscape can contribute to altered gene expression and neuronal dysfunction in HD.