Adv Exp Med Biol
-
An increasing number of web resources are available for aiding in proteomics research. Databases contain repositories of proteins and associated information. ⋯ This chapter contains a selection of web sites useful for proteomics analyses but is by no means comprehensive. Using a search engine such as Google is the easiest way to find the sites using the name given below.
-
Biological systems function via intricate cellular processes and networks in which RNAs, metabolites, proteins and other cellular compounds have a precise role and are exquisitely regulated (Kumar and Mann, FEBS Lett 583(11):1703-1712, 2009). The development of high-throughput technologies, such as the Next Generation DNA Sequencing (NGS) and DNA microarrays for sequencing genomes or metagenomes, have triggered a dramatic increase in the last few years in the amount of information stored in the GenBank and UniProt Knowledgebase (UniProtKB). GenBank release 210, reported in October 2015, contains 202,237,081,559 nucleotides corresponding to 188,372,017 sequences, whilst there are only 1,222,635,267,498 nucleotides corresponding to 309,198,943 sequences from Whole Genome Shotgun (WGS) projects. ⋯ Meanwhile, UniProtKB/TrEMBL (release 2015_12 of December 9 2015) contains 1,838,851,8871 amino acids corresponding to 555,270,679 entries. Proteomics has also improved our knowledge of proteins that are being expressed in cells at a certain time of the cell cycle. It has also allowed the identification of molecules forming part of multiprotein complexes and an increasing number of posttranslational modifications (PTMs) that are present in proteins, as well as the variants of proteins expressed.
-
Lung cancer is the leading cause of cancer-related deaths worldwide with a 5-year overall survival rate of less than 20 %. Considering the treatments currently available, this statistics is shocking. A possible explanation for the disconnect between sophisticated treatments and the survival rate can be related to the post-treatment enrichment of Cancer Stem Cells (CSCs), which is one of a sub-set of drug resistant tumor cells with abilities of self-renewal, cancer initiation, and further maintenance of tumors. ⋯ Through the processes of EMT, epithelial cells lose their epithelial phenotype and gain mesenchymal properties, rendering EMT phenotypic cells acquire drug-resistance. In this chapter, we will further discuss the role of microRNAs (miRNAs) especially because miRNA-based therapies are becoming attractive target with respect to therapeutic resistance and CSCs. Finally, the potential role of the natural agents and synthetic derivatives of natural compounds with anti-cancer activity, e.g. curcumin, CDF, and BR-DIM is highlighted in overcoming therapeutic resistance, suggesting that the above mentioned agents could be important for better treatment of lung cancer in combination therapy.
-
Telocytes (TCs) are interstitial cells found in stroma of many organs, including the skin dermis. Ultrastructurally, normal skin TCs recapitulates all the previously documented features in interstitum of other organs. Their (ultra)structural hallmark is the presence of particular shaped cellular prolongations (termed telopodes), along other features as cellular organelles representation and their distribution within cell body and its prolongations. ⋯ Furthermore, in psoriasis, the lesional remission is (ultra)structurally displaying a recovery of dermal TCs at values similar to normal. Considering TCs ultrastructural features, their connections and spatiality in normal dermis and also their pathologic changes, TCs are credited with roles in skin homeostasis and/or pathogeny of dermatological disorders. In our opinion, further researches should be focused on identifying a specific marker for TCs and also on comprehending the pattern of their response in different dermatoses.
-
Posttranslational modifications (PTMs) are important biochemical processes for regulating various signaling pathways and determining specific cell fate. Mass spectrometry (MS)-based proteomics has been developed extensively in the past decade and is becoming the standard approach for systematic characterization of different PTMs on a global scale. ⋯ With great effort in recent years by the proteomics community, highly efficient enriching methods and comprehensive resources have been developed. This chapter will specifically focus on five major types of PTMs; phosphorylation, glycosylation, ubiquitination/sumosylation, acetylation, and methylation.