Adv Exp Med Biol
-
What defines the spatial and temporal boundaries of seizure activity in brain networks? To fully answer this question a precise and quantitative definition of seizures is needed, which unfortunately remains elusive. Nevertheless, it is possible to ask under conditions where clearly divergent patterns of activity occur in large-scale brain networks whether certain activity patterns are part of the seizure while others are not. Here we examine brain network activity during focal limbic seizures, including diverse regions such as the hippocampus, subcortical arousal systems and fronto-parietal association cortex. ⋯ We propose that the seizure proper can be defined as regions showing intense increases, while those areas showing opposite changes are inhibited by the seizure network and constitute long-range network consequences beyond the seizure itself. Importantly, the fronto-parietal cortex shows sleep-like slow wave activity and depressed metabolism under these conditions, associated with impaired consciousness. Understanding which brain networks are directly involved in seizures versus which sustain secondary consequences can provide new insights into the mechanisms of brain dysfunction in epilepsy, hopefully leading to innovative treatment approaches.
-
Once viewed as part of the "dark matter" of genome, long noncoding RNAs (lncRNAs), which are mRNA-like but lack open reading frames, have emerged as an integral part of the mammalian transcriptome. Recent work demonstrated that lncRNAs play multiple structural and functional roles, and their analysis has become a new frontier in biomedical research. In this chapter, we provide an overview of different lncRNA families, describe methodologies available to study lncRNA-protein and lncRNA-DNA interactions systematically, and use well-studied lncRNAs as examples to illustrate their functional importance during normal development and in disease states.
-
Lung cancer is a heterogeneous, complex, and challenging disease to treat. With the arrival of genotyping and genomic profiling, our simple binary division of lung cancer into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) is no longer acceptable. In the past decade and with the advent of personalized medicine, multiple advances have been made in understanding the underlying biology and molecular mechanisms of lung cancer. ⋯ Personalization of therapy will involve close collaboration between the laboratory and the clinic. Given the heterogeneity and complexity of lung cancer treatment with respect to histology, tumor stage, and genomic characterization, mind mapping has been developed as one of many tools which can assist physicians in this era of personalized medicine. We attempt to utilize the above tool throughout this chapter, while reviewing lung cancer epidemiology, lung cancer treatment, and the genomic characterization of lung cancer.
-
Incidence of skin tumors is increasing among elderly patients, and the multi-morbidities which occur in the elderly are a great challenge for dermatologists. Basis of every treatment of skin cancer patients is a reliable diagnosis. Therefore, histopathology serves as the gold standard in clinical dermatooncology and dermatologic surgery. This chapter provides a comprehensive review on the main types of melanoma and nonmelanoma skin cancers, including precursor lesions.
-
In general protein posttranslation modifications (PTMs) involve the covalent addition of functional groups or molecules to specific amino acid residues in proteins. These modifications include phosphorylation, glycosylation, S-nitrosylation, acetylation, lipidation, among others (Angew Chem Int Ed Engl 44(45):7342-7372, 2005). Although other amino acids can undergo different kinds of oxidative posttranslational modifications (oxPTMs) (Exp Gerontol 36(9):1495-1502, 2001), in this chapter oxPTM will be considered specifically related to Cysteine oxidation, and redox proteomics here is translated as a comprehensive investigation of oxPTMs, in biological systems, using diverse technical approaches. ⋯ Therefore, the identification and localization of oxPTMs within cellular milieu became critical to understand redox regulation of proteins in physiological and pathological conditions, and consequently an important information to develop better strategies for treatment and prevention of diseases associated with oxidative stress. There is a wide range of techniques available to investigate oxPTMs, including gel-based and non-gel-based separation approaches to be combined with sophisticated methods of detection, identification, and quantification of these modifications. The strategies and approaches to study oxPTMs and the respective applications related to physiological and pathological conditions will be discussed in more detail in this chapter.