Adv Exp Med Biol
-
Prolactin (PRL), synthesized by the anterior pituitary and to a lesser extent by numerous extrapituitary tissues, affects more physiological processes than all other pituitary hormones combined. This hormone is involved in > 300 separate effects in various vertebrate species where its role has been well documented. The initial step in its action is the binding to a specific membrane receptor which belongs to the superfamily of class 1 cytokine receptors. ⋯ PRL-binding sites have been identified in a number of cells and tissues of adult animals. Disruption of the gene for the PRL receptor has provided a new animal model with which to better understand the actions of PRL on mammary morphogenesis and mammary gland gene expression. The recent availability of genetic mouse models provides new insights into mammary developmental biology and how the action of a hormone at specific stages of development can have effects later in life on processes such as mammary development and breast cancer initiation and progression.
-
Intracerebral MD enables the retrieval of endogenous substances from the extracellular fluid (ECF) of the brain and has been demonstrated to be a sensitive technique for early detection of subtle vasospasm-induced neurometabolic abnormalities in patients with subarachnoid hemorrhage (SAH). The aim of this study was to monitor cortical extracellular concentrations of energy metabolism markers, such as glucose and lactate, neurotransmitter amino acids, such as glutamate, aspartate, GABA and taurine to identify any neurochemical patterns of cerebral ischemia. A prospective clinical study was conducted on a group of 16 patients with non-severe SAH operated on within 72 hours after initial bleeding. ⋯ Increased lactate levels positively correlated with glutamate (P<0.0001), aspartate (P<0.0001), GABA (P<0.0001) and taurine (P<0.0001) concentrations. These results suggest that also in humans increased taurine levels reflect a condition of cellular stress. This study confirms that MD is a sensitive technique to reveal subtle metabolic abnormalities possibly resulting in cell damage.
-
Remyelination enables restoration of saltatory conduction and a return of normal function lost during demyelination. Unfortunately, remyelination is often incomplete in the adult human central nervous system (CNS) and this failure of remyelination is one of the main reasons for clinical deficits in demyelinating disease. An understanding of the failure of remyelination in demyelinating diseases such as Multiple Sclerosis depends upon the elucidation of cellular events underlying successful remyelination. ⋯ However, given the increasing recognition that myelin sheaths play a role in protecting axons from degeneration, the success or failure of remyelination has functional consequences for the patient. To understand why remyelination should fail in demyelinating disease and develop strategies to enhance remyelination requires an understanding of the biology of successful remyelination. Firstly, what is the origin of the remyelinating cell population in the adult CNS? Secondly, what are the dynamics of the cellular response of this population during demyelination and remyelination? And thirdly, what are the consequences to the tissue of an episode of demyelination? This review will focus on studies that address these issues, and discuss the implications of the results of these experiments for our understanding of MS and the development of therapeutic interventions aimed at enhancing remyelination.