J Transl Med
-
Comparative Study
CT radiomics facilitates more accurate diagnosis of COVID-19 pneumonia: compared with CO-RADS.
Limited data was available for rapid and accurate detection of COVID-19 using CT-based machine learning model. This study aimed to investigate the value of chest CT radiomics for diagnosing COVID-19 pneumonia compared with clinical model and COVID-19 reporting and data system (CO-RADS), and develop an open-source diagnostic tool with the constructed radiomics model. ⋯ The combined radiomics model outperformed clinical model and CO-RADS for diagnosing COVID-19 pneumonia, which can facilitate more rapid and accurate detection.
-
Rheumatoid arthritis (RA) is the most common chronic autoimmune connective tissue disease. However, early RA is difficult to diagnose due to the lack of effective biomarkers. This study aimed to identify new biomarkers and mechanisms for RA disease progression at the transcriptome level through a combination of microarray and bioinformatics analyses. ⋯ This work identified three haematologic/immune system-specific expressed genes, namely, GZMA, PRC1, and TTK, as potential biomarkers for the early diagnosis and treatment of RA and provided insight into the mechanisms of disease development in RA at the transcriptome level. In addition, we proposed that NEAT1-miR-212-3p/miR-132-3p/miR-129-5p-TTK, XIST-miR-25-3p/miR-129-5p-GZMA, and TTK_hsa_circ_0077158-miR-212-3p/miR-132-3p/miR-129-5p-TTK are potential RNA regulatory pathways that control disease progression in early RA.
-
Treating severe forms of the acute respiratory distress syndrome and cardiac failure, extracorporeal membrane oxygenation (ECMO) has become an established therapeutic option. Neonatal or pediatric patients receiving ECMO, and patients undergoing extracorporeal CO2 removal (ECCO2R) represent low-flow applications of the technology, requiring lower blood flow than conventional ECMO. Centrifugal blood pumps as a core element of modern ECMO therapy present favorable operating characteristics in the high blood flow range (4 L/min-8 L/min). However, during low-flow applications in the range of 0.5 L/min-2 L/min, adverse events such as increased hemolysis, platelet activation and bleeding complications are reported frequently. ⋯ This study highlights the underappreciated hemolysis in centrifugal pumps within the low-flow range, i.e. during pediatric ECMO or ECCO2R treatment. The in-vitro results of hemolysis and the in-silico computational fluid dynamic simulations of flow paths within the pumps raise awareness about blood damage that occurs when using centrifugal pumps at low-flow operating points. These findings underline the urgent need for a specific pump optimized for low-flow treatment. Due to the inherent problems of available centrifugal pumps in the low-flow range, clinicians should use the current centrifugal pumps with caution, alternatively other pumping principles such as positive displacement pumps may be discussed in the future.