Trials
-
Cardiotocography is almost ubiquitous in its use in intrapartum care. Although it has been demonstrated that there is some benefit from continuous intrapartum fetal monitoring using cardiotocography, there is also an increased risk of caesarean section which is accompanied by short-term and long-term risks to the mother and child. There is considerable potential to reduce unnecessary operative delivery with up to a 60% false positive diagnosis of fetal distress using cardiotocography alone. ST analysis of the fetal electrocardiogram is a promising adjunct to cardiotocography alone, and permits detection of metabolic acidosis of the fetus, potentially reducing false positive diagnosis of fetal distress. ⋯ Approximately 20% of Australian babies are delivered by emergency caesarean section. This will be the first Australian trial to examine ST analysis of the fetal electrocardiogram as an adjunct to cardiotocography as a potential method for reducing this proportion. The trial will be among the first to comprehensively examine ST analysis, taking into account the impact on psychosocial well-being as well as cost-effectiveness. This research will provide Australian evidence for clinical practice and guideline development as well as for policy-makers and consumers to make informed, evidence-based choices about care in labour.
-
Accidental Accidental awareness during general anesthesia (AAGA) occurs in 1-2% of high-risk practice patients and is a cause of severe psychological trauma, termed post-traumatic stress disorder (PTSD). However, no monitoring techniques can accurately predict or detect AAGA. Since the first reflex for a patient during AAGA is to move, a passive brain-computer interface (BCI) based on the detection of an intention of movement would be conceivable to alert the anesthetist. However, the way in which propofol (i.e., an anesthetic commonly used for the general anesthesia induction) affects motor brain activity within the electroencephalographic (EEG) signal has been poorly investigated and is not clearly understood. For this reason, a detailed study of the motor activity behavior with a step-wise increasing dose of propofol is required and would provide a proof of concept for such an innovative BCI. The main goal of this study is to highlight the occurrence of movement attempt patterns, mainly changes in oscillations called event-related desynchronization (ERD) and event-related synchronization (ERS), in the EEG signal over the motor cortex, in healthy subjects, without and under propofol sedation, during four different motor tasks. ⋯ MOTANA is an exploratory study aimed at designing an innovative BCI based on EEG-motor brain activity that would detect an attempt to move by a patient under anesthesia. This would be of interest in the prevention of AAGA.
-
A classical approach to produce interscalene brachial plexus block (ISBPB) consistently spares the posterior aspect of the shoulder and ulnar sides of the elbow, forearm, and hand, which are innervated by the lower trunk of the brachial plexus (C8-T1). As an alternative to the classical approach, a caudal approach to ISBPB successfully produces anesthesia of the ulnar sides of the elbow, forearm, and hand. However, its beneficial effects on anesthesia in the posterior aspect of the shoulder have not been investigated. In addition, the C8 nerve root is not routinely selectively blocked during ISBPB. Therefore, we will compare the C5 to C7 and C5 to C8 nerve root blocks during a caudal approach to ISBPB to assess the clinical benefit of C8 nerve blocks for the surgical anesthesia of the posterior aspect of the shoulder. ⋯ This study is the first to evaluate the beneficial effects of the C8 nerve root block during ISBPB, which has rarely been performed due to the technical challenge in visualizing and blocking the C8 nerve root. It is expected that a C8 nerve root block performed during ISBPB will provide sufficient surgical anesthesia of the posterior aspect of the shoulder, which cannot be achieved by a classical approach to ISBPB.
-
Carpal tunnel syndrome (CTS) is a common cause of pain, weakness, sensory loss, and activity limitations. Currently, the most common initial treatment is use of a rigid splint immobilizing the wrist, usually during night-time, for several weeks. Evidence regarding the efficacy and effect durability of wrist splinting is weak. The treatment is associated with costs and may cause discomfort and limit daily and work activities. No placebo-controlled trials have been performed. ⋯ This is the first placebo-controlled randomized trial with electronic monitoring of actual splint use and will provide evidence regarding the efficacy of wrist splinting in patients with CTS.
-
Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. ⋯ Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks.