Trials
-
Comparative Study
Evaluating the effect of immersive virtual reality technology on gait rehabilitation in stroke patients: a study protocol for a randomized controlled trial.
The high incidence of cerebral apoplexy makes it one of the most important causes of adult disability. Gait disorder is one of the hallmark symptoms in the sequelae of cerebral apoplexy. The recovery of walking ability is critical for improving patients' quality of life. Innovative virtual reality technology has been widely used in post-stroke rehabilitation, whose effectiveness and safety have been widely verified. To date, however, there are few studies evaluating the effect of immersive virtual reality on stroke-related gait rehabilitation. This study outlines the application of immersive VR-assisted rehabilitation for gait rehabilitation of stroke patients for comparative evaluation with traditional rehabilitation. ⋯ Virtual reality is an innovative technology with broad applications, current and prospective. Immersive VR-assisted rehabilitation in patients with vivid treatment scenarios in the form of virtual games will stimulate patients' interest through active participation. The feedback of VR games can also provide patients with performance awareness and effect feedback, which could be incentivizing. This study may reveal an improved method of stroke rehabilitation which can be helpful for clinical decision-making and future practice.
-
Spinal cord stimulation (SCS) is an effective method to treat neuropathic pain; however, it is challenging to compare different stimulation modalities in an individual patient, and thus, it is largely unknown which of the many available SCS modalities is most effective. Specifically, electrodes leading out through the skin would have to be consecutively connected to different, incompatible SCS devices and be tested over a time period of several weeks or even months. The risk of wound infections for such a study would be unacceptably high and blinding of the trial difficult. The PARS-trial seizes the capacity of a new type of wireless SCS device, which enables a blinded and systematic intra-patient comparison of different SCS modalities over extended time periods and without increasing wound infection rates. ⋯ Combining paresthesia-free SCS modalities with wireless SCS offers a unique opportunity for a blinded and systematic comparison of different SCS modalities in individual patients. This trial will advance our understanding of the clinical effectiveness of the most relevant SCS paradigms.
-
New considerations during the ethical review processes may emerge from innovative, yet unfamiliar operational methods enabled in pragmatic randomized controlled trials (RCT), potentially making institutional review board (IRB) evaluation more complex. In this manuscript, key components of the pragmatic "Aspirin Dosing: A Patient-Centric Trial Assessing Benefits and Long-term Effectiveness (ADAPTABLE)" randomized trial that required a reappraisal of the IRB submission, review, and approval processes are discussed. ⋯ Development of engaging communication channels between IRB and study personnel in pragmatic randomized trials as early as at the time of protocol design allows to reduce issues with IRB approval. Integrations of the lessons learned in ADAPTABLE regarding the IRB process for centralized IRBs, informed consent, patient engagement, and risk determination can be emulated and will be instrumental in future pragmatic studies.
-
COVID-19 is a respiratory disease caused by a novel coronavirus (SARS-CoV-2) and causes substantial morbidity and mortality. At the time this clinical trial was planned, there were no available vaccine or therapeutic agents with proven efficacy, but the severity of the condition prompted the use of several pharmacological and non-pharmacological interventions. It has long been hypothesized that the use of convalescent plasma (CP) from infected patients who have developed an effective immune response is likely to be an option for the treatment of patients with a variety of severe acute respiratory infections (SARI) of viral etiology. The aim of this study is to assess the efficacy and safety of convalescent plasma in adult patients with severe COVID-19 pneumonia. ⋯ This clinical trial is designed to evaluate the efficacy and safety of passive immunotherapy with convalescent plasma for the treatment of adult patients hospitalized with COVID-19. The results of this study are expected to contribute to establishing the potential place of CP in the therapeutics for a new viral disease.
-
As of December, 1st, 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, resulted in more than 1 472 917 deaths worldwide and death toll is still increasing exponentially. Many COVID-19 infected people are asymptomatic or experience moderate symptoms and recover without medical intervention. However, older people and those with comorbid hypertension, diabetes, obesity, or heart disease are at higher risk of mortality. Because current therapeutic options for COVID-19 patients are limited specifically for this elderly population at risk, Biophytis is developing BIO101 (20-hydroxyecdysone, a Mas receptor activator) as a new treatment option for managing patients with SARS-CoV-2 infection at the severe stage. The angiotensin converting enzyme 2 (ACE2) serves as a receptor for SARS-CoV-2. Interaction between ACE2 and SARS-CoV2 spike protein seems to alter the function of ACE2, a key player in the renin-angiotensin system (RAS). The clinical picture of COVID-19 includes acute respiratory distress syndrome (ARDS), cardiomyopathy, multiorgan dysfunction and shock, all of which might result from an imbalance of the RAS. We propose that RAS balance could be restored in COVID-19 patients through MasR activation downstream of ACE2 activity, with 20-hydroxyecdysone (BIO101) a non-peptidic Mas receptor (MasR) activator. Indeed, MasR activation by 20-hydroxyecdysone harbours anti-inflammatory, anti-thrombotic, and anti-fibrotic properties. BIO101, a 97% pharmaceutical grade 20-hydroxyecdysone could then offer a new therapeutic option by improving the respiratory function and ultimately promoting survival in COVID-19 patients that develop severe forms of this devastating disease. Therefore, the objective of this COVA study is to evaluate the safety and efficacy of BIO101, whose active principle is 20-hydroxyecdysone, in COVID-19 patients with severe pneumonia.