Bmc Genomics
-
Idiopathic interstitial pneumonias (IIPs) are a group of heterogeneous, somewhat unpredictable diseases characterized by progressive scarring of the interstitium. Since lung function is a key determinant of survival, we reasoned that the transcriptional profile in IIP lung tissue would be associated with measures of lung function, and could enhance prognostic approaches to IIPs. ⋯ We identified commonalities and differences in gene expression among different subtypes of IIPs. Disease progression, as characterized by lower measures of FVC and DLCO, results in marked changes in expression of novel and established genes and pathways involved in IIPs. These genes and pathways represent strong candidates for biomarker studies and potential therapeutic targets for IIP severity.
-
Recent advances in the analysis of high-throughput expression data have led to the development of tools that scaled-up their focus from single-gene to gene set level. For example, the popular Gene Set Enrichment Analysis (GSEA) algorithm can detect moderate but coordinated expression changes of groups of presumably related genes between pairs of experimental conditions. This considerably improves extraction of information from high-throughput gene expression data. However, although many gene sets covering a large panel of biological fields are available in public databases, the ability to generate home-made gene sets relevant to one's biological question is crucial but remains a substantial challenge to most biologists lacking statistic or bioinformatic expertise. This is all the more the case when attempting to define a gene set specific of one condition compared to many other ones. Thus, there is a crucial need for an easy-to-use software for generation of relevant home-made gene sets from complex datasets, their use in GSEA, and the correction of the results when applied to multiple comparisons of many experimental conditions. ⋯ BubbleGUM is an open-source software that allows to automatically generate molecular signatures out of complex expression datasets and to assess directly their enrichment by GSEA on independent datasets. Enrichments are displayed in a graphical output that helps interpreting the results. This innovative methodology has recently been used to answer important questions in functional genomics, such as the degree of similarities between microarray datasets from different laboratories or with different experimental models or clinical cohorts. BubbleGUM is executable through an intuitive interface so that both bioinformaticians and biologists can use it. It is available at http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html .